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augmentation lags behind, whenever the user moves the device with natural speed. If the ap-
plications use marker or markerless tracking, a correct detection is only possible if the markers
or objects in the real world are captured at least almost completely on the screen.

The goal of this thesis is to investigate the possibilities of displaying larger-than-screen objects
on mobile devices with real-time markerless tracking. Different approaches to markerless ob-
ject and symbol identification will be investigated regarding their portability to mobile devices
with sufficient performance. Depending on how promising the investigated methods are one
or several will be implemented for further research. By combining and enhancing the methods,
a markerless tracking technique for mobile devices will be developed. The primary concerns
will be the performance of this technique and the visualisation of larger-than-screen objects
while the user moves around them.
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1. Research and comparison of existing methods for markerless tracking
2. Become familiarized with the platform chosen within the game studio.
3. Implementation

a) Determine which methods and how many will be implemented
b) Implement the chosen methods
c) Enhance implemented solutions, for example by combining different methods

4. Written documentation, evaluation and presentation of the results
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Zusammenfassung

Die vorliegende Arbeit untersucht markerloses Tracking hinsichtlich seiner Umsetzbarkeit auf
mobilen Endgeräten. Trackingprozesse bestimmen die Position und Orientierung eines mobi-
len Endgeräts im Verhältnis zu seiner Umgebung. Markerloses Tracking stützt sich dabei nur
auf die natürlich vorhandene Umgebung. Es verwendet keine künstlichen Strukturen, soge-
nannte Marker, die in der Umgebung angebracht werden, um das Tracking zu unterstützen.

Tracking findet unter anderem in Augmented Reality Verwendung. Augmented Reality er-
gänzt die reale Umgebung eines Benutzers um virtuelle Objekte. Damit diese Objekte mög-
lichst nahtlos in die reale Umgebung integriert werden können, ist es notwendig den Blick-
winkel des Benutzers auf die Szene zu kennen. Liegt dieser vor, so können Augmented Reality
Systeme die virtuellen Objekte entsprechend ausrichten.

Mobile Endgeräte, insbesondere Mobiltelefone, haben in den vergangen Jahren eine enorme
Entwicklung durchlaufen. Ihre Rechenleistung steigt kontinuierlich. Inzwischen sind Mobilte-
lefone mit verschiedenen Sensoren ausgestattet, die markerloses Tracking erleichtern. Sie be-
sitzen Videokameras, deren Leistungen an Webcams heran reichen, GPS, Accelerometers und
Kompasse. Dennoch schränkt Tracking die Möglichkeiten von Augmented Reality Systemen
auf mobilen Endgeräten entscheidend ein.

Markerloses Tracking ist äußerst komplex. Je genauer und stabiler markerloses Tracking sein
soll, desto aufwendiger ist die Verarbeitung. Die Ressourcen eines mobilen Endgeräts reichen
selbst für einfache Ansätze nicht zwangsläufig aus. Diese Arbeit untersucht, welche Bereiche
des markerlosen Trackings besonders anspruchsvoll sind und wie ein markerloses Tracking
System für mobile Endgeräte aussehen kann.

Dazu entwirft und implementiert sie ein Tracking System. Die Implementation findet auf
einem Laptop statt. Anhand der Verarbeitungszeit und der Resultate des Systems, findet eine
Abschätzung über die Erfolgschancen des Systems auf einem mobilen Endgerät statt.

Die Arbeit beschränkt sich auf bild-basiertes Tracking, d.h. sie verwendet neben einer Vi-
deokamera keine weiteren Sensoren. Die verwendete Webcam bietet eine ähnliche Qualität des
Videos wie mobile Endgeräte.

Die Arbeit erforscht und bewertet verschiedene Methoden zum markerlosen Tracking. Da-
bei betrachtet sie die einzelnen Aufgaben eines Tracking Systems und sucht nach geeigneten
Lösungen für diese.

Das entworfene System verwendet einen Marker zur Initialisierung. Mittels des Markers
kann die Position und Orientierung bestimmt werden. Der Marker verankert die Positionsbe-
stimmung in einem Weltkoordinatensystem. Würde dies nicht getan, könnte die Position und
Orientierung nur in Bezug auf den ersten Frame des Videos berechnet werden.

Das System erstellt eine Karte der Umgebung. In diese Karte trägt es auffällige Merkmale,
die es in der Umgebung detektiert, ein. Zur Detektion und Beschreibung der Merkmale ver-
wendet das System Speeded Up Robust Features[BETG08]. Mit jedem neuen Frame, den die
Kamera liefert, kann das System mittels der Merkmale eine Verbindung zu den bisherigen Fra-
mes herstellen. Hierzu sucht es Merkmale im aktuellen Frame, die schon in vorangegangenen
Frames beobachtet wurden. Sobald ein Merkmal in einem zweiten Frame erscheint, kann seine
3D Position rekonstruiert werden. Hierzu trianguliert[HZ04] das System die Bildpunkte.
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Wenn die 3D Positionen der Merkmale bekannt sind, können sie zur Bestimmung der Po-
sition und Orientierung der Kamera verwendet werden. Wenn der Marker sich nicht mehr
im Blickfeld der Kamera befindet, übernimmt POSIT[DD95] die Berechnung. Wenn in einem
Frame mindestens vier Merkmale vorliegen, deren 3D Position bekannt ist, kann POSIT die
Position und Orientierung der Kamera berechnen.

Das resultierende System besitzt zwei Schwachstellen, eine im Hinblick auf die Effizienz des
Systems, die andere im Hinblick auf seine Genauigkeit. Die Extraktion von Merkmalen und
deren Beschreibung benötigt einen Großteil der Verarbeitungszeit, die das System für einen
Frame aufbringt. Der hohe Aufwand der Merkmalsextraktion führt dazu, dass das System nur
um die fünf Frames pro Sekunde verarbeitet.

POSITs Ergebnisse sind bisweilen ungenau. Je weiter die Kamera sich von dem Marker ent-
fernt, desto ungenauer werden die Resultate. Außerdem beeinflussen sich die 3D Rekonstruk-
tion und POSIT gegenseitig, sodass sich Fehler und Ungenauigkeiten aufsummieren.

Die Arbeit unterbreitet verschiedene Vorschläge zur Verbesserung der Schwachstellen. Ab-
gesehen von den beiden Schwachstellen bietet das System allerdings eine gute Basis für Aug-
mented Reality Systeme.

Markerloses Tracking auf mobilen Endgeräten erfordert zwar einiges an Arbeit und Opti-
mierung, rückt aber in greifbare Nähe. Auf mobilen Endgeräten würde zuverlässiges, ortsun-
abhängiges markerloses Tracking eine neue Bandbreite an Applikationen ermöglichen.
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1 Introduction

Movies, novels and other media paint a fascinating picture of how virtual elements might be-
come a part of everyday life in the future. In these visions, the real world becomes the display
and user interface by combining reality with virtual elements. Virtual elements can be placed
everywhere and change according to their environment and the persons who use an applica-
tion. In this way, the virtual elements add a completely new perspective to reality.

The research field with which this thesis deals, Augmented Reality (AR), tries to realise this
vision. It attempts to create new experiences and possibilities by integrating virtual elements
as texts, objects or sensory stimuli into everyday life. Bringing virtual elements to people whe-
rever they are, right onto their mobiles, is a first step into that direction. These virtual ele-
ments should react to the user and his environment, so that the elements become a part of the
environment. It would be amazing if applications were able to adapt to their users and the
environment. Step by step, researchers interlace virtuality with everyday life.

1.1 Motivation

Augmented Reality integrates virtual content into a user’s environment. The user’s field-of-
view, usually captured by a video camera, then contains virtual objects. However, the virtual
objects are not placed randomly but according to the information which is available about
the environment. For instance, a virtual vase stands on a table and does not float in the air,
information about a building is visually linked to that building.

Since the conception of AR in the 1960s by Sutherland[Sut68], improvements have led to its
application to various areas such as medicine, navigation, engineering, maintenance and enter-
tainment. Most AR applications are developed for research purposes. Commercial applications
only use AR if the field of application and the environment are restraint and predictable.

AR potentially places virtual content scattered around the user’s environment. Thereby it
encourages users to explore their environment. A few years ago, that was only possible by
using special AR technology. Users were walking around with displays mounted on their
heads, a backpack and data gloves.

Due to the growth of the computational resources of mobile devices, these have become more
and more suitable for AR applications.[KM09] They can now establish internet connections and
feature GPS, compasses, accelerometers, video-cameras and so forth. Using mobile devices,
instead of specially built AR technology, is a logical consequence of this development.

Mobile AR uses the potential of mobile devices to create applications that enrich user’s rea-
lity wherever they go. Möhring et al.[MLB04] introduced one of the first Mobile AR applica-
tions in 2004. Since then, numerous researchers investigated Mobile AR, leading to the recent
development of some commercial applications.

The main limitation of all Mobile AR applications is tracking. Tracking determines the po-
sition and orientation of a camera within the environment. Thus, the field-of-view and pers-
pective of a user are known. Tracking thereby enables a system to place virtual content in
accordance with real objects.
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1 Introduction

Tracking is and has always been central to AR. Even today it is the topic that is most discus-
sed among AR researchers[ZDB08]1. Among the topics that have recently emerged, Mobile AR
is the one on which most researchers focus[ZDB08]2. This thesis combines the two issues.

For AR, tracking is fundamental, but it remains one of the most complicated and demanding
topics. Hardly any tracking is expandable to unprepared, previously unknown environments.
If tracking rests upon artificial structures, so-called markers, it is feasible. However, markers
require precisely what Mobile AR tries to avoid: a prepared environment. In order to make AR
available at any time and place, tracking demands a more complicated approach. In this case,
the calculation of the position and orientation of the camera can only use what the available
sensors can naturally observe in the environment. This approach is called markerless tracking.

Markerless tracking demands a trade-off between precision and efficiency. On the one hand,
the more information the application gathers and uses, the more precise is the tracking. On the
other hand, the fewer information the calculations have to consider, the more efficient is the
tracking. Efficiency is a huge issue for tracking on mobile devices. The available resources are
very limited and the tracking cannot even use all of them, as the rest of the application needs
processing power too. All these thoughts have to be considered when deciding on a tracking
approach.

1.2 Goal

The goal of this thesis is to determine whether it is possible to run vision-based markerless
tracking on a mobile device in real time with appropriate accuracy. Both accuracy and perfor-
mance have to be at such a level that the user experience is enjoyable and that the application
runs smoothly. This is not possible if it takes the system a notable amount of time to react to
the user’s input or if the results differ too much from what users observe in reality.

This thesis investigates existing methods and tracking systems and uses this knowledge to
create a markerless tracking system. Ideally, the system would meet these requirements and
conditions:

• The system knows at any time where the camera is within the newly observed environ-
ment.

• The tracking is precise enough for smooth augmentation and fast enough to enable inter-
active user participation.

• The system uses no sensor except the video-camera.

• The environment is not known in advance.

• Although the environment is previously unknown, the system gathers enough informa-
tion about the environment to enable correct augmentation of an object that has been
detected previously, even if the camera no longer captures it. For example, if a flower
grew out of a pot, this flower should still be visible if the camera captures the area above
the pot. This is only possible if the system can determine the relation between a view and
the environment.

• No preparations are necessary to successfully use the system.

1As Zhou et al.[ZDB08] state, tracking is the topic on which the highest amount of papers published at the leading
conferences focuses.

2Zhou et al.[ZDB08] identify Mobile AR to be the leading topic among the emerging research topics in AR.
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1.3 Delimitation

• The system works even with limited computational resources and a video-camera with
low resolution. This ability indicates whether the tracking could potentially work on a
mobile device.

This thesis strives to develop such a markerless tracking system.

1.3 Delimitation

The research goal of this thesis touches upon many problems. Solving all of them at once is
nearly impossible. Therefore, this thesis limits the problem domain. By doing so, this thesis
tries to predict the capabilities of markerless tracking for Mobile AR.

One of the problems that this thesis does not attempt to solve, is the markerless initialisation
of tracking. Calculating position and orientation of a camera while moving around, using
nothing but the information that the video-frames convey, implicates enough problems. To
calculate position and orientation using one frame or a couple of frames without any further
knowledge about the environment is very complicated. Solving such a problem requires a
thesis of its own. Therefore, this thesis uses a marker as a starting point. Using the marker, the
system calculates position and orientation of the camera and uses this knowledge as a starting
point for the markerless tracking. As soon as the marker is out of view, the markerless tracking
takes over.

Another limitation of the problem domain is, that this thesis develops the tracking system
on a laptop3. By not using a mobile device, this thesis avoids some of the problems that using
a mobile device entails. Libraries can be used without porting them to a mobile platform. This
simplifies matters, especially the usage of the camera and the gathering of its video-stream.
Even though the tracking takes place on a laptop, it should be possible to determine if the limi-
ted resources of a contemporary mobile phone would allow the markerless tracking solution
to work.

As a consequence, this thesis develops a tracking system that establishes a basis for further
development towards the ideal, that the previous section described. It is a working and expan-
dable basis for AR applications. Section 7.2 presents suggestions for future enhancements and
developments.

1.4 Approach

In order to be able to contribute to the field of markerless tracking, it is necessary to know the
topic intimately. When approaching this thesis, it was therefore essential to examine research
about AR, Mobile AR and markerless tracking first. During this phase of literature research,
existing systems and libraries were examined and an overview of recent advancements and
applications was established. A part of this phase was to consider different approaches to
markerless tracking and to discard them, in case they did not meet the requirements of this
thesis. Simultaneous Localisation and Mapping (SLAM) became a focus of this research.

The results of the research shaped the markerless tracking concept of this thesis. While desi-
gning the concept, the structure of the system was determined and how its components affect
each other.

During the implementation of the system, parts of the concept were further refined if neces-
sary. Some parts use an existing library.

3Section 5.1 overviews the platform which this thesis uses.
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1 Introduction

This thesis examines and evaluates the implementation in chapter 6. It determines the pro-
cessing time of the system and its components and analyses the tracking results.

1.5 Results

This thesis examines markerless tracking approaches. Using the knowledge about different
approaches, it designs and implements a markerless tracking system. The system splits the
tracking into two stages: the initialisation and the markerless tracking.

The system uses a marker during the initialisation. Thereby, it obtains the camera’s position
and orientation and establishes a reference frame. The system detects the connection between
the video frames by locating points that are present in at least two frames. The system recons-
tructs the 3D information of such points and builds a map of the environment with them.

When the marker is no longer visible, the markerless tracking takes over. The system esti-
mates the camera’s position and orientation in a frame by using the points in the map that are
present in the frame it gathers. It updates the map in order to acquire new points which it can
use for future estimations.

The system meets some of the goals presented previously in this chapter. It works within
unprepared environments. It uses only a camera as a sensor. The camera’s resolution is compa-
rable to one of a mobile phone. That the system creates and updates a map of the environment
enables the augmentation of objects that are out of view.

While the user executes the application, the system estimates the camera’s position and
orientation. However, it is possible that the system cannot connect a frame to previous ones,
in which case the tracking fails. Additionally, the system is not as fast and precise as would
be desirable. Finding those points in a frame, which have a high probability of being recogni-
sable in the following frames, and describing them in such a way that the system can recognise
them, slows the system down. The estimation of the camera’s position and orientation, that
the system executes during the markerless tracking stage, returns inaccurate results. These
inaccuracies accumulate, because the results of the components influence each other.

The markerless tracking stage completes its calculations faster than the initialisation stage.
Nevertheless, the system requires more computational resources than mobile devices offer.

Concerning both precision and efficiency, the system contains one component that lessens it,
whereas the other components are reliable and faster. The two presented weaknesses require
further improvements. If the system could overcome them, it could be ported to a mobile
device without concern. It would achieve almost all goals. However, it would still require the
preparation of a marker.

1.6 Outline of this Thesis

After this introduction follows chapter 2 which presents background information on AR. It
explains what AR tries to achieve and what its main research issues are. The chapter covers
Mobile AR and gives an overview of tracking approaches.

The following chapter specifically explains markerless tracking as the focus of this thesis.
It covers model-based tracking and gives a detailed description of vision-based tracking. It
describes the components of a vision-based tracking application and presents the approach of
SLAM.

Afterwards the architecture of the tracking system is developed. This chapter 4 defines which
components the system uses for the different stages of tracking and how they work together.

4



1.6 Outline of this Thesis

The following chapter 5 presents the implementation. Code examples will illustrate the ap-
proaches.

Chapter 6 then discusses the results. Following the observations, it analyses and validates
the results.

The final chapter 7 presents the conclusion. It summarises the achievements, draws conclu-
sions from them and presents proposals for future work.
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2 Augmented Reality

This chapter presents an overview of Augmented Reality (AR) as a research field. After a
description of what defines AR in section 2.1 and its main research topics in section 2.2. The
chapter narrows the topic down to the core issues of the thesis. This is done by discussing
Mobile AR in section 2.1.1 and then tracking in section 2.3.

2.1 Concept

Augmented Reality complements the real world via virtual content. An AR system integrates
virtual content into the real environment, be it indoors or outdoors. This virtual content has
the potential to address every sense, not only vision. Applications often use sound to create
a realistic experience and they may employ touch or smell as well. Most applications focus
on vision though; hardly any application does not address vision. With respect to vision, AR
systems overlay a user´s field of view of the reality with virtual information, in order to support
him in some way. By doing so, AR “enhances the user´s perception of and interaction with the
real world”(Azuma,[Azu97], 1997).

Integrating virtual content usually means adding virtual objects. An example is figure 2.1,
which shows a virtual train. Other uses are possible, too. For instance real objects can be hidden
by virtually continuing their background.

According to Milgram and Kishino[MK94], AR is a special kind of Mixed Reality. They de-
fine Mixed Reality as a real to virtual continuum, shown in table 2.1, ranging from the real
environment to Virtual Reality, which includes no real elements at all. AR and Augmented Vir-
tuality fill the range between these two extremes. Augmented Virtuality works with a virtual
environment and uses real elements to enhance it.

Mixed Reality

Real
Environment

Augmented
Reality

Augmented
Virtuality

Virtual
Environment/
Virtual Reality

Table 2.1: Classification of Mixed Reality according to Milgram and Kishino[MK94].

Azuma’s[Azu97] definition of AR is the one commonly used in AR research. Azuma states
that an AR Reality system combines the following properties:

• The system works in real time1.

• It is possible to interact with it in real time.

• It combines virtual and physical objects.

1Basically the amount of frames per second defines whether an application is real time. According to Akenine-
Möller et al.[AMHH08] a system is interactive at about 6 frames per second and works in real time when it
displays 15 frames per second. Depending on the application other aspects may be important too, such as delay
of its responses.
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Figure 2.1: AR application called “The Invisible Train” (Courtesy of Vienna University of Tech-
nology, [WPLS05])

• The combination creates the illusion of the virtual elements being a natural part of the
real world.

In order to create the illusion the the virtual and real content belong to the same space, the
virtual objects and the real objects are aligned to each other. This process is called registration
and is further discussed in section 2.2. Achieving the illusion is only possible if the systems
meets the real time requirement. If the system does not run in real time, movements result in
inconsistencies and destroy the illusion[ZDB08].

Two broad categories of AR systems exist: optical see-through and video see-through AR.
They differ in the kind of display a system uses. Using an optical see-through display enables
the user to see the real world. The display is transparent and shows nothing but the virtual
content that augments the reality. However, most AR systems are of the video see-through
type. The system adds virtual content to a video stream of the real world. This thesis uses
video see-through AR.

2.1.1 Mobile Augmented Reality

Most AR applications are, in a sense, mobile; the user moves around while using them. Ho-
wever, many AR applications only work in prepared environments or are limited to a certain
place. Also, users tend to reject AR technology like gloves and head-mounted displays. This
thesis uses the term Mobile AR to address a branch of AR, wherein applications aim to address
these issues.

In addition to the properties Mobile AR applications share with all AR applications, they

• use common mobile devices as a platform,
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• are independent of a specific location,

• do not require preparations,

• use the environment as the user interface[HF04].

Mobile AR targets a new range of users who already possess and use all necessary technology.
This has several advantages. Mobile devices, especially mobile phones, are light and small - or
at least more so than many other kinds of AR technology. Mobile devices are not specialised
and not only researchers use them; instead they are widespread. Then again, the limited re-
sources mobile devices offer are a drawback. Their low computational power and the quality
of their video-cameras pose challenges, especially when it comes to tracking. Small keypads
and displays with low resolution can be problematic as well.

Mobile AR´s main limitation is tracking[ZDB08]. Marker-based tracking works, but restricts
applications to prepared environments, which is something Mobile AR tries to avoid. Many
applications use the sensors that mobile devices provide in order to aid tracking, for example
accelerometers, compasses and GPS.

2.2 Main Research Issues

The two main issues that AR research faces are tracking and registration. Both issues have
to be properly solved by every AR application. In AR the real environment offers a reference
frame for visual content. Therefore, users immediately realise if tracking or registration are
insufficient[Azu97]. Depending on the application and the devices it uses, the emphasis varies.
An application may require robust or accurate tracking, fast or precise registration. Solutions
have to adapt to the requirements of the application.

2.2.1 Registration

Registration uses the results from tracking to align virtual and real content to each other. The
alignment has to be done with respect to real objects and to the camera’s position. Registration
is either open-loop or closed-loop. Open-loop registration relies solely on the information from
the tracking system; it uses no feedback. Closed-loop registration delivers feedback on the
precision of the registration, which is taken into account during future calculations.

Achieving proper registration can be complicated because the user sees what happens
in the real world. Users always recognise displacements between virtual content and real
objects[Azu97]. Within the context of some applications the accuracy may not be top prio-
rity. For example, in the case of annotating buildings in a town, it is acceptable not to place the
annotation right in the centre of the building. However, the information must not be placed on
a different building.

Other applications require very accurate registration. For these kinds of applications it might
not only be troublesome to contain misplaced information, but a serious reason for not using
said application. If a touristic application misplaces information every now and then it is ac-
ceptable, but in a medical application the misplacement of information could seriously harm
the patient.

Azuma[Azu97] states that accurate registration is hard to achieve since there are various and
very different sources of errors. Azuma divides them into two broad categories of registration
errors: static and dynamic ones. Static registration errors happen, while neither the camera nor
the objects move. Dynamic errors appear when there is movement. System delays cause them.

9



2 Augmented Reality

2.2.2 Tracking

Tracking determines the position and orientation (pose) of the camera2 within the environment.
Tracking issues, approaches and solutions are present throughout the thesis, particularly from
section 2.3 onwards.

Tracking is a fundamental part of every AR application. Without the pose, virtual content
cannot be placed in any relation to real elements or the camera’s perspective.

Tracking systems determine three degrees of freedom for both position and orientation: They
calculate a position as a 3D-point with x-, y- and z-coordinate and an orientation as a 3D-vector
with yaw-, pitch- and roll-angles.[HF04] These position and orientation values may either be
absolute or relative to the surroundings.

Tracking has to be as precise, accurate and robust as possible in order to create the illu-
sion that the virtual content is a part of the real world[Azu97]. Ideally, a tracking process
computes results in real-time without being affected by different surroundings and different
circumstances, for example changing lighting conditions. Such a perfect tracking system can
hardly be achieved. Most tracking systems are therefore specialised and work best under cer-
tain conditions and with restrictions (cp. [RDB01, ZDB08, ABB+01]).

As with registration, tracking systems can be distinguished as being either open-loop or
closed-loop systems. Zhou et al.[ZDB08] define closed-loop systems as systems that correct
their errors dynamically, which open-loop systems do not. This is due to the fact that closed-
loop systems gather feedback about their results and adapt their calculations accordingly.

Tracking is the major issue in Mobile AR. Therefore, this thesis focuses on tracking solutions.

2.3 Tracking Approaches

Tracking approaches can be classified in many different ways. However, almost every work
in this field of research agrees on a basic division of tracking in vision-based, sensor-based
and hybrid approaches. The approaches vary in the way they gather information about the
environment.

2.3.1 Vision-based Approaches

Two kinds of vision-based approaches exist: the ones using artificial markers and the ones
working without markers, which rely on natural features instead. Table 2.2 presents a clas-
sification of vision-based approaches. As Zhou et al.[ZDB08] state, tracking research mainly
focuses on vision-based approaches. The attention is unevenly divided between the subareas.
Feature-based tracking is the most active research area. Even though researchers have made no-
teworthy improvements during the past years, many problems persist. Model-based tracking
is a fairly new research area, which has risen to attention during the past years. Marker-based
tracking is very well researched and no new developments have arisen in that area during the
past five years.

The first Mobile AR applications all used marker-based tracking and many applications still
do (cp. [GKCS01, MLB04, PW03, HKW09]). Although marker-based tracking limits applica-
tions, it produces the most stable results and works best with limited computational resources.
Unfortunately, markers disagree with the vision of Mobile AR. They are acceptable though, if

2Knowing the position of the camera is the essence of all tracking in video see-through AR. In optical see-through
AR tracking usually focuses on determining the position of the user´s head. In terms of tracking and registration,
this thesis always refers to the camera.
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vision-based tracking
marker tracking markerless tracking

using passive
markers

using active
markers

model-based image
processing

Table 2.2: Classification of vision-based tracking approaches.

an application requires nothing but to print a marker in advance. Marker-based tracking serves
as an adequate means to initiate development in Mobile AR.

So far model-based tracking has not been attempted in Mobile AR applications. As it requires
models, it limits the environment and is therefore unsuitable for Mobile AR.

Several Mobile AR applications use feature-based tracking, but they impose constraints on
the applications (cp. [BBB+03, CMC03, CGKM07]). In particular, they cover only small areas.
This tracking restricts the applications to indoor environments, because they can be controlled.

Section 2.3.4 explores marker-based tracking and chapter 3 elaborately discusses markerless
tracking.

2.3.2 Sensor-based Approaches

Table 2.3 contains a classification of sensor-based approaches that rests upon the work by Rol-
land et al.[RDB01]. It is a rough overview of the most common sensor-based approaches.
Sensor-based applications usually use either inertial sensors, magnetic field sensing or time-
frequency measurements3. Table 2.3 includes examples of sensors belonging to the three dif-
ferent fields.

sensor-based tracking
magnetic field sensing inertial time-frequency

measurements
f.ex. compass f.ex. accelerometer,

mechanical gyroscope,
inclinometer,
pedometer

f.ex. GPS, ultrasonic,
optical gyroscope

Table 2.3: Classification of sensor-based tracking approaches with examples.

Many Mobile AR applications use sensors of today’s mobile devices. Compasses, accelero-
meters, GPS and so forth often come in handy. Navigational applications, like Nearest Tube4

or Wikitude5, use GPS and a compass to ascertain the position of the mobile device and the
direction it is facing.

This thesis explores only markerless tracking approaches using vision. It makes no use of
any other sensor than a video-camera.

3Time-frequency measurements unite all kind of systems that calculate a pose by using the time it takes for a signal
to travel from the emitter to the moving receiver.

4http://www.acrossair.com/acrossair_app_augmented_reality_nearesttube_london_for_
iPhone_3GS.htm, visited in May 2010

5http://www.wikitude.org, visited in May 2010
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Figure 2.2: The marker that this thesis uses. (Courtesy to ARToolKit[KB])

2.3.3 Hybrid Approaches

Hybrid tracking combines different approaches. Hybrid systems try to compensate disadvan-
tages of one approach by using another or several other ones. In hybrid systems, a chosen ap-
proach is especially well-suited for tasks which another approach that the system uses cannot
sufficiently solve[Azu97]. Hybrid approaches often serve the purpose of retrieving feedback on
the tracking process and using this additional knowledge to the system’s advantage, thereby
establishing a closed-loop system[ZDB08].

Popular combinations include the use of vision-based tracking with inertial tracking
or the combination of several sensor-based approaches, for example a compass with an
accelerometer[RDB01].

Mobile AR often applies several sensors for tracking (cp.[HHF04]). The previous section in-
troduced two applications for mobile phones which both combine sensors. Another example
is Google Sky Map6. It uses GPS, an accelerometer and a compass to determine which constel-
lation of the night sky the mobile phone’s camera captures. In fact, most commercial AR appli-
cations for mobile devices rely on the combination of several sensors.

2.3.4 Marker Tracking

The field of marker tracking examines artificial structures, which have been placed in the tra-
cking environment, and how they can be used for tracking purposes. These artificial structures
are called markers. Figure 2.2 shows the marker this thesis uses. When designing a marker the
most important fact to consider is, that it should be a structure that is easy to distinguish from
the environment. The probability to find similar structures has to be as low as possible.

Before the tracking can commence, the markers have to be placed in the environment or
on the targets, which the application tracks. The application uses knowledge about the mar-
kers, for example their position within the environment and their measurements. By choosing

6http://www.google.com/sky/skymap/, visited in May 2010
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artificial structures which are easy to distinguish from the environment and adding a special
meaning to them, tracking systems can easily compute the camera’s pose in relation to markers.
Markers can be either active or passive. Active markers emit some sort of signal, for instance
using LEDs as markers is possible.

The video-stream provides the basis for feature extraction. The application then matches
these features to the knowledge existing about the markers.

Markers enable robust tracking, without requiring a high amount of computational
resources[ZDB08]. Unfortunately, unprepared environments are impossible to use. Once the
markers have been placed in an environment, they have to be maintained to ensure their avai-
lability and integrity. Hence, preparations are always necessary before using a marker tracking
system. Another drawback is, that a marker has to be in view at all times[Azu97]. Even then
the tracking may fail, if the marker is too far away to be correctly recognised or if there is oc-
clusion - even if this occlusion hides only a small part of the marker[ZDB08]. Additionally, it is
difficult to develop a set of markers that bears a meaning to users and that the tracking easily
recognises.

Rekimoto[Rek98] introduced marker tracking to the field of AR. Since then, much research
has been carried out. Since Zhang et. al. reviewed and compared the leading approaches in
marker tracking[ZFN02], no innovations have emerged.

Applications like the Invisible Train[WPLS05] or ARTennis[HBO05] prove the usefulness of
marker-based tracking for Mobile AR. These applications use passive markers. Using active
markers is possible, but has not been attempted on mobile devices.

2.3.4.1 Libraries

Several robust and efficient strategies for using markers exist and have been used to build tra-
cking libraries. Among them are ARToolKit[KB], ARTag7, ALVAR8 and Studierstube[SW07].
Some of these libraries have been used for Mobile AR. Pasman and Woodward[PW03] for
example use ARToolKit. Schmalstieg and Wagner[SW07] developed Studierstube specifically
to work on mobile devices. The most popular marker tracking library is ARToolKit, which this
thesis uses in order to initialise the tracking.

ARToolKit is freely available for non-commercial use. It supports both optical see-through
and video see-through AR and contains all functions which are necessary to build a simple
AR application. Apart from the tracking routines, which are the core of the system, additional
features are available. ARToolKit is able to integrate and calibrate a camera and then gather the
video stream. The tracking functions convert frames to binary images and search them for the
black frames which all markers exhibit. They calculate position and orientation of the markers
in relation to the camera. Then they match the symbols of the markers to provided templates.
In a final step, ARToolKit overlays the video stream with a virtual object. The application
places the marker according to the information the tracking provides. Figure 2.3 displays a
simple example of how that might look like. It shows a cube that has been placed on top of a
marker.

ARToolKit is capable of detecting multiple markers in a frame. In order to acquaint users
with the library, several example applications exist. It cannot deal with occlusion or strong
shadows. However, this is acceptable within this thesis, as a marker is only used as a means of
initialisation.

7http://www.artag.net/, visited in May 2010
8http://virtual.vtt.fi/virtual/proj2/multimedia/alvar.html, visited in May 2010
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Figure 2.3: Application that tracks a marker and places a cube on top of it. (Courtesy to AR-
ToolKit’s application SimpleTest [KB])

2.3.5 State of the Art

Recent tracking systems produced very good results for indoor applications. Predominantly,
they use hybrid approaches and work within a limited range (cp. [ZDB08, HF04, ABB+01]).

According to Zhou et al.[ZDB08] current tracking systems consist of two stages. The first
stage is dedicated to either learning and training or feature extraction. The second stage takes
care of the tracking itself, using the knowledge gained through training or the features that
have been extracted. The first stage usually requires the most computational resources, if the
system uses a learning algorithm. Using a learning stage can reduce the resources the on-line
tracking needs, enabling the system to work in real time.

2.3.5.1 Limitations and Challenges

Even though tracking systems are accurate enough to achieve good results, the environments
they work in are usually restricted not only to being indoors but also to being known in
advance[ABB+01]. Dynamical adaption to unknown environments still poses a challenge.

Complex scenes are challenging for real-time 3D tracking as is the motion of target
objects[ZDB08]. Coping with rapid camera movements is difficult as resulting motion-blur
hinders the re-observation of features. Rapid and unpredictable changes, that may occur in out-
door environments, constrain tracking results[HF04]. Especially illumination changes, which
often and repeatedly occur outdoors, complicate the tracking process[ZDB08]. Basically all
changes which cannot be controlled or anticipated are hard to handle.

Some systems feature automatic reinitialisation, but the recovery of the camera pose, when
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the tracking has failed, cannot be achieved easily[ZDB08]. It is limited to applications which
possess enough knowledge about the environment or which do not solely rely on vision-based
tracking.

2.3.5.2 Trends

Current research features many tracking approaches. Coping with unknown outdoor envi-
ronments is an important topic. One way researchers are trying to achieve that is by further
investigating hybrid approaches.

As the growing number of publications during the past years indicate, Mobile AR becomes
more and more popular among researches[SW07, WRM+08]. The growing computational re-
sources of mobile devices present novel possibilities. The number of commercial applications
from which users can choose continually rises. Among them are Layar9, Nokia Point & Find10,
Twitter AR11 and Virus Killer 36012.

Building a reference presentation of the environment while tracking is a popular trend,
research focusing especially on Simultaneous Localisation and Mapping (SLAM)[CGKM07,
DRMS07, KM09]. Such systems usually require a high amount of computational resources.
However, through certain restrictions, SLAM works on a mobile phone, too, as has recently
been shown by the work of Klein and Murray[KM09]. Instead of using as many features as
possible and hoping that some of the chosen features provide robust tracking, researchers try
to find methods to detect only suitable and useful features in the first place[ZDB08, ST94].

Researchers try to find ways of making initialisation processes automatic[SKSK07]. Focu-
sing on model-based tracking is popular as well[FL07, WS07]. Last but not least, ubiquitous
tracking, that is tracking acquired by forming a dense network of sensors that enables tracking
everywhere, seems to be achievable in the near future[HPK+07].

9http://www.layar.com/, visited in May 2010
10http://pointandfind.nokia.com/publishers, visited in May 2010
11http://www.acrossair.com/acrossair_app_augmented_reality_nearesttweet_for_iphone_

3gs.htm, visited in May 2010
12http://www.acrossair.com/acrossair_app_augmented_reality_viruskiller360_for_

iPhone_3GS.htm, visited in May 2010
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3 Markerless Tracking

This chapter details the different approaches to markerless tracking and the components it
requires, that the previous chapter mentioned to some extent. First, section 3.1 presents model-
based tracking. As this thesis does not use model-based tracking, the section gives only a rough
overview. Approaches based on image processing and pattern recognition fill the rest of the
chapter. Section 3.2 summarises the basic process and stages of these approaches. The follo-
wing sections contemplate the different stages: section 3.3 depicts feature detection and des-
cription, section 3.4 details the search for correspondences, section 3.5 elaborates approaches to
pose estimation and section 3.6 explains 3D reconstruction. Section 3.7 introduces the concept
of Simultaneous Localisation and Mapping, which integrates the stages into an overall concept.

3.1 Model-based

Comport et al.[CMC03] presented one of the first model-based systems and thereby sparked the
interest of researchers. Since then model-based tracking has drawn more and more attention to
itself[ZDB08]. Model-based tracking uses a model of the environment or models of the objects
to be tracked as references for the tracking system. Model-based systems render models from
different point of views. Two basic approaches use the thus created model images for tracking
purposes.

The first approach extracts features from the model images and video-frames. It then com-
pares the features found in a model image with the ones found in a frame. The comparison
yields pairs of features which most likely show the same point in the world. These pairs are
referred to as correspondences. The tracking system uses the correspondences to estimate the
camera’s position and orientation (pose). If necessary, the system refines this estimation by ren-
dering other views of the models, using poses that are similar to the estimated one. A similarity
measure, for example the amount of correspondences, judges whether the results need further
refinement by rendering the scene from other views. Until the results meet the threshold defi-
ned by the similarity measure, the system keeps refining the results.

The second approach measures the similarity between a model image and a video-frame.
Using the result, the system approximates a camera’s pose. It renders an image with this pose,
and repeats this process until the image and the frame are close to equal.

In general, the models consist of edge- or line-features[ZDB08]. Edges are especially popular
as they are easy to find and robust to lighting changes. When using a model, systems usually
become more robust and efficient[CMC03]. The main drawback of model-based systems is
that they require models. Depending on how large the environment is, that a system sets out
to track, the modelling process can be very time-consuming.

This thesis develops a tracking system which should not depend on a certain place. There-
fore, it does not apply a model-based tracking approach.
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3.2 Image Processing

Markerless tracking based on image processing uses natural features in images to calculate a
camera’s pose. Park et.al.[PYN98] presented one of the first applications using natural features
for tracking purposes. They used markers for the initialisation.

A markerless tracking approach first extracts features from the frames of a video-stream.
Then it finds correspondences between succeeding frames. Based upon these correspondences
it calculates a camera’s pose. The system stores features, which were not detected in previous
frames, and calculates their 3D coordinates. It stores these new features in order to use them
for future correspondence searches.

When using image processing methods, the intensity, or rather the changes of the inten-
sity, influence the choice of features the most. It is unknown whether the chosen features will
reappear in the following frames. Tracking fails if it cannot establish a connection to previous
frames. In this case it becomes impossible to determine the change of the camera’s pose bet-
ween the frames. To counteract this, many applications extract high amounts of features. The-
reby, they enhance the probability of having enough useful features, but at the same time in-
crease the computational complexity. Some approaches try to choose the most useful features
instead. They assess which features have the highest information content. This is a difficult
task, especially when the environment is unknown. Every markerless tracking application
tries to achieve a balance between accuracy and efficiency. Solving this trade-off is a complex
task.

The system calculates the camera’s pose in relation to the first frame unless it manages to
establish a reference frame. In order to do this, this thesis uses a marker. The marker defines the
origin of the world coordinate system and ensures that the coordinates reproduce the measures
of the real world.

Summing up, the common procedure of a markerless tracking system looks as follows:

1. The system detects natural features in the current frame.

2. It compares the features and finds corresponding ones.

3. It approximates the camera’s pose1. It uses the correspondences whose 3D positions are
already known for these calculations.

4. It calculates the 3D positions of the correspondences whose 3D position are unknown.

The following sections explain each of these steps.

3.3 Feature Detection and Description

3.3.1 Feature Detector

A feature is a point of interest in an image. Usually, such a feature has no concrete semantic,
but is instead a distinctive point within an image in terms of intensity. Markerless tracking
applications automatically detect features in images and use them for tracking purposes.

Features are among others points (no dimension), lines and edges (1-dimensional) or seg-
ments (2-dimensional). The dimension influences the complexity of the calculations: The hi-
gher the dimension the higher the complexity. This is due to the higher amount of values

1The camera’s pose is in relation to the reference frame, if the system has established one. If not, it is merely in
relation to the first frame.
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that are necessary to describe higher dimensional features. After all, a n-dimensional feature
consists of several features with the dimension n − 1. A line for example consists of several
points. For the same reason, tracking is more accurate when it uses higher-dimensional fea-
tures. The more is known about the features, the more distinct they are from each other. The
more is known about the environment, the more accurate are the estimations.

To reduce the computational complexity, this thesis uses point features. All pixels, that nota-
bly differ from their neighbourhood, are chosen as features. This approach has some problems.
Even pixels that are part of persons or moving objects are chosen as features. They appear at
different places and thereby mislead the tracking.

Ideally, features are re-observable from different point of views under different lighting
conditions. This property of a feature detector is called repeatability and is a detector’s most
important property[BETG08]. Features should be unique and easy to distinguish from their
environment and each other.

Additionally, it is advantageous if features possess invariances. Invariances describe the
independence of a feature from certain transformations. Features may be invariant to transfor-
mations such as rotation or translation. The length of an edge for example is invariant to the
2D-rotation of an image. Within an image only a limited amount of features are invariant to one
or several transformations, but their information content is higher than that of other features.

Feature detection in general is more accurate than it is efficient. This is due to the fact, that
feature detection influences all other components of a markerless tracking system. Inaccuracies
therefore endanger the success of the whole tracking process.

3.3.2 Descriptor

In order to be able to compare features with each other, it is necessary to identify and describe
them. The values describing a pixel, its colour value and image coordinates, do not suffice.
After all, feature detection algorithms choose pixels as features that stand out from their neigh-
bourhood. The neighbourhood presents the context in which a feature is observable. If the
colour values of two features are similar they could still represent different points in the world.
However, if the colour values and their environment are similar, they probably describe the
same point. Therefore, a description of a feature has to include the neighbourhood.

The selection of pixels that are a part of a feature’s neighbourhood is crucial. In an image, the
pixels of an object near the camera and those of an object far away, may appear near each other.
Only the pixels that represent points in the world that are near a feature should be included in
its neighbourhood, though. A thus developed description identifies features and can be used
to compare features.

A vector, which is called descriptor, stores the values that describe a feature and its neighbou-
rhood. Plenty of approaches exist that calculate these values, all trying to give them as much
meaning as possible. When judging a descriptor’s usefulness, it has to be considered whether
the descriptor is distinctive, robust and stores only as much information as necessary[BETG08].
A descriptor is distinctive if it is easy to distinguish from descriptors that describe other fea-
tures and similar to descriptors describing the same feature from a different point of view. The
robustness of a descriptor indicates whether it is easily affected by noise, detection displace-
ment or geometric and photometric deformations[BETG08].

3.3.3 Scale Invariant Feature Transformation

Lowe[Low99] developed the Scale Invariant Feature Transformation (SIFT) and defined a fea-
ture detector and descriptor based upon it. SIFT is the most commonly used method for feature
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detection and description[BETG08]. Other methods have to live up to the standard set by SIFT.
SIFT features are invariant to rotation and scaling.

SIFT transforms an image into differential scale space. Every extremum in scale space is a
feature2. For each feature, SIFT divides its 128-neighbourhood into eight, evenly distributed
square patches. It creates a gradient histogram3 for every patch. The values of the histogram
build the descriptor. The descriptor is normalised and becomes thereby invariant to changes of
contrast.

Due to their invariance to rotation and scaling and their distinctiveness, SIFT features pro-
vide a good basis for a correspondence search. However, the extraction of SIFT features is
quite complex. Therefore, real-time applications often rely on approximations[BETG08]. Seve-
ral approximations exist, but they do not produce results that equal those of the original SIFT
approach in robustness, distinctiveness and repeatability. Non real-time applications regularly
apply SIFT. In order to leverage SIFT features, while avoiding their complexity, some applica-
tions only use them to initialise the system. Another possibility is to limit the search area.

Though SIFT is stable, yields good results, is useful for correspondence searches and faster
than many other feature detection and description approaches, its complexity still is a draw-
back. This thesis uses a faster alternative of equal quality, namely Speeded Up Robust Features.

3.3.4 Speeded Up Robust Features

Bay et al. created a feature detector and descriptor which they called Speeded Up Robust Fea-
tures (SURF)[BETG08]. SURF approaches detection and description in a way similar to SIFT.
According to the evaluation of Bay et al.[BETG08], SURF’s results are as accurate and robust as
SIFT’s, while it takes less time to complete the calculations. The detector is based on the hessian
matrix4. The descriptor is based on the intensity distribution within the neighbourhood of the
features. SURF does not use colour information. It is invariant to scaling and rotation. The
detector is repeatable and the descriptor distinctive and robust.

The detector localises blob-like structures. Blob detection identifies points in an image that
are brighter or darker than their neighbourhood. The detector calculates the Hessian for every
image point for different scales. It convolves5 the image with a Gaussian second order deriva-
tive. SURF approximates the Gaussian with a box filter6. In order to make this approximation
as fast as possible, SURF uses an integral image7. It then calculates the determinant of the Hes-

2The scale has a large impact on objects and on how they appear in a video-frame[Lin09]. Transforming an image
into a scale space means that an image is convolved with a Gaussian filter. In order to create results for different
scales, the Gaussian filter kernel is adapted. The different scales form an image pyramid. The neighbourhood
of a pixel in one scale now includes the pixels at the same position in the scale above and below the current
one. Using different scales of an image improves the repeatability of a detector as it is unknown at which scale
a feature will be re-observed. Therefore, it is useful to choose features which are found in different scales.

3A histogram represents the distribution of a codomain, in this case the gradient. For all possible values, the
histogram stores the amount of times this value appears.

4A Hessian matrix is a square matrix that contains the second order partial derivatives of a function. Thereby,
it describes the local curvature of a function with several variables. In this case these variables are the x- and
y-position and the scale.

5In image processing a convolution superimposes a mask onto an image. For every pixel of the image, it uses the
mask to change the pixels value according to the other pixels covered by the mask. The values that the mask
contains describe for every neighbouring pixel how much it influences the result. Usually, the mask is a square
structure. Convolutions can describe linear filters. A convolution potentially smooths or smears the image or it
emphasises certain structures.

6A box filter assigns the average value of a pixel’s neighbours to this pixel.
7For every pixel (x , y) in an image a rectangular region can be defined by this pixel and the upper left corner

of the image. At that position (x , y) an integral image stores the sum of all values of the pixels within such a
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3.3 Feature Detection and Description

Figure 3.1: Images with different intensity changes. Outer left: a homogeneous image. Inner
left: Homogeneous in y-direction. Sudden intensity changes in x-direction. Inner
right: Homogeneous in x-direction. Sudden intensity changes in y-direction. Outer
right: A gradually increasing intensity in x-direction.

sian, which serves as the blob response for the point. SURF creates a blob response map for
different scales. The maps contain the blob responses of every image point. SURF detects local
maxima in the 3× 3× 3 neighbourhood of a point in the maps. The detected maxima are SURF
features.

The SURF descriptor represents the distribution of the intensity within the neighbourhood of
a SURF feature. It assigns an orientation to every feature. For this task, it uses a first order Haar
wavelet response8 in both x- and y-direction within a circular neighbourhood. By considering
the orientation, SURF becomes invariant to image rotation. Calculating the orientation can be
omitted, which makes SURF faster but less distinctive.

In order to calculate the descriptor for a feature, SURF constructs a rectangular region around
it. The region is rotated along a feature’s orientation, if one was calculated. SURF then divides
the region into sixteen equally distributed, quadratic sub regions. For each sub region, it calcu-
lates Haar wavelet responses in x- and y-direction at twenty-five evenly distributed points.

It weighs the responses with a Gaussian centred at the feature. This means that values closer
to the feature carry more weight than ones farther away. This weighting increases the robust-
ness against geometric deformations and localisation errors.

Then, the responses in both directions within a sub-region are summed up. The absolute
values of the responses are also summed up. This yields four values that describe how homo-
geneous a sub region is. They indicate if, how much and in which way the intensity within the
region changes.

If the intensity within a region does not change, the Haar wavelet responses are close to zero.
If a region is homogeneous like the outer left image of figure 3.1, all four sums are relatively
low. The intensity in the inner left image often changes in x-direction and never in y-direction.
Both sums in y-direction have low values. The sum of the responses in x-direction is low as
well. This is due to the opposing intensity changes: falling and rising even each other out. The
absolute sum on the other hand is high. The inner right image presents the opposite situation.
The absolute sum in y-direction is high and the other three values are low. The outer right
image shows a gradual increasing intensity in x-direction. Here, both sums in x-direction are
high, both sums in y-direction low.

rectangle. The sum of all values within any rectangular region of the original image can be computed by adding
and subtracting the values of this region’s corners in the integral image. Thereby, integral images enable the fast
computation of box type filters.

8Wavelets split low frequencies from high ones. In image processing, the pixel values are the frequencies. The
Haar wavelet response indicates whether the values fall, rise or remain the same in a specified direction. The
algebraic sign of the response indicates whether the values are rising or falling.
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SURF concatenates the four sums that describe every sub region. This yields a descriptor
with sixty-four elements. SURF normalises the descriptor, whereby it achieves invariance to
contrast.

As is common for feature detection, SURF is not as efficient as it is accurate. However, SURF
focuses much more on efficiency than feature detectors usually do.

3.4 Correspondences

If two features in different images show the same point in the world, this pair is called a cor-
respondence. Markerless tracking applications try to recognise parts of the environment that
they have observed before. The correspondence search is responsible for re-observing features.
Markerless tracking approaches search for correspondences between features that are present
in the current frame and features that have been observed previously. A correspondence search
can only succeed if at least a part of the current view has been captured before.

Correspondences are only useful for the calculation of a camera’s pose if their 3D position is
already known. Therefore, tracking applications split the correspondences they find in those
that have a 3D position assigned and those that have not. The correspondences with a known
3D position are the input of the algorithm that calculates the camera’s pose.

If a feature reappears for the first time, no 3D position is available. In this situation, recons-
tructive approaches calculate the 3D position based on the camera’s poses in the two images in
which the features forming the correspondence were detected.

If features are never re-observed in another image, they are unsuitable and waste memory.
Therefore, many applications discard features that they do not re-observe within a couple of
frames. Another strategy is to consider a feature only worthwhile when it has been observed a
certain amount of times.

Incorrect correspondences are a bigger problem. They are impossible to avoid, it is difficult
to find them and they influence the results. They produce drift. Pose calculations using them
produce a pose differing from the real one. As this pose is the basis for all following calcu-
lations, the drift will not disappear. In fact, it gets worse, when other faulty correspondences
influence the following calculations.

3.4.1 Sum of Squared Differences

The sum of squared differences(SSD) is one of the easiest ways to compare two descriptors.
Assuming that the correspondence search tries to compare descriptor a to descriptor b which
both consist of n elements, it first subtracts b from a9. Then, every element of the resulting
vector is squared. SSD sums these squared elements up. Equation 3.1 represents these calcula-
tions. If the result of the SSD is zero or close to zero, the descriptors are very similar. Similar
descriptors indicate a correspondence.

dSSD =
n∑

i=1

(ai − bi)
2 (3.1)

This thesis uses SSD, as it is a simple, computationally inexpensive method to compare two
measurements that yields good results. SSD balances efficiency and accuracy quite well.

9As the result is squared, it does not matter which vector is subtracted from the other.
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3.5 Camera Pose Estimation

3.5 Camera Pose Estimation

The estimation of a camera’s pose is possible when at least four correspondences exist. The
3D positions of the features have to be known. Two general approaches exist, algebraic and
optimising ones.

Algebraic methods construct an overdetermined system of equations out of the correspon-
dences and solve it. They include the linear 4-point algorithm[QL99], factorisation methods
and bundle adjustment. In general, they are fast, but very sensitive to noise and numerically
instable.

Optimising methods use an initial guess of the camera’s pose to estimate one closer to the
real situation. Then, they use the resulting pose as input. This way, they compute the same
calculations over and over, which is why they are also called iterative methods. Ideally, the pose
approaches the true camera’s pose with every iteration. The iterations stop when the resulting
pose hardly differs from the input pose of that iteration. The initial guess is crucial. The farther
away it is from the camera’s pose, the longer it takes to complete the calculations and the results
may even diverge more and more from reality with every iteration. Optimising methods tend
to be numerically stable. The Levenberg-Marquardt algorithm[Lev44] is an optimising method.

This thesis takes a hybrid approach, called Pose from Orthography and Scaling with Itera-
tions.

3.5.1 Pose from Orthography and Scaling with Iterations

DeMenthon and Davis developed Pose from Orthography and Scaling with
Iterations(POSIT)[DD95]. POSIT combines the positive aspects of algebraic and optimi-
sing algorithms. It is comparatively robust, numerically stable and fast. It does not require an
initial pose estimate.

POSIT requires a set of correspondences with known 3D coordinates. It uses the 3D coor-
dinates of the first correspondence as a reference point. POSIT calculates the camera’s pose in
relation to this reference point. It returns the camera’s translation and rotation from the world
coordinate system, which has been shifted into the reference point, to the camera.

POSIT builds upon the algorithm Pose from Orthography and Scaling (POS). POS uses an
orthographic projection and a scaling to estimate a camera’s pose. POS assumes that the 3D
coordinates of all correspondences have a similar depth. The whole process rests on this as-
sumption. The pose approximation cannot yield good results, if the original depths are too
dissimilar. In this case the assumption would not be a close enough approximation of reality.

POS projects all 3D coordinates into a plane which is parallel to the image plane and contains
the reference point. For this process it applies an orthographic projection, which sets the depth
information of all coordinates to the one of the reference point. Then, POS projects the thus
changed coordinates into the image plane employing a perspective projection. The resulting
image coordinates are the basis for the pose calculation.

The perspective projection requires a camera’s pose. Even though the first iteration calculates
the pose in the same way as all following ones, POSIT does not need an initial guess. During
the first iteration POS simply uses the original image coordinates. This is another reason why
the depth values should not be too different from each other. The result of the first iteration
depends on the assumption that the original image points are similar to the ones POS would
calculate if the camera’s pose was available. The similarity of the image points in turn depends
on the similarity of the depth values.

POS approximates two of the camera coordinate system’s axes. In order to estimate one axis,
it scales the 3D coordinates with the x-value of its corresponding image point. It uses the y-
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value for the scaling of the other axis. For both axes, it adds the thus scaled 3D coordinate
vectors to each other. This addition results in two of the axes. The cross product of the two axes
yields the third axis.

The three axes build the rotation matrix and translation vector in the following manner. Each
row of the rotation matrix contains a normalised axes; the first row comprises the axis based on
the x-values, the second the y-value based axis and the third axis fills the third row. The trans-
lation vector’s x- and y-coordinate contain the image point that corresponds to the reference
point. The translation’s z-coordinate equalises the known focal length of the camera. The norm
of one of the first two axes10 divides this translation vector.

From the second iteration onwards, POSIT compares the image points resulting from the
orthographic and subsequent perspective projection with the original ones. If they are almost
equal, POSIT starts no further iteration. In this case, it returns the current camera’s pose. If
they still differ, POSIT starts another iteration. It changes the image points according to the
currently estimated camera’s pose and calls POS, which estimates a new camera’s pose. Then
it again compares the image points with the original ones.

Originally, DeMenthon and Davis applied POSIT to object tracking. They used it to calculate
the pose of the camera in relation to an object. As the objects were not that large, their depth
values were similar enough, to allow POSIT to deliver good results. POSIT used nothing except
the image points of the objects and their 3D correspondences. It did not require any additional
information, like their measurements. This means that POSIT can be applied to all kinds of
scenes and environments. The correspondences can be part of different objects.

According to DeMenthon’s and Davis’ evaluation, POSIT is stable and many times faster
than other pose estimations. The accuracy of POSIT depends on the amount of correspon-
dences it uses. While using the minimum number of features - four - may not yield the most
accurate results, the accuracy quickly increases the more correspondences are available. Taking
into consideration that POSIT, unlike many other algorithms, does not require an initial pose
estimate and that it works quite fast, it is a very promising choice.

DeMenthon and Davis chose to focus on efficiency rather than accuracy. The accuracy of
POSIT depends on the situation and the detected correspondences.

3.6 3D Reconstruction

Vision-based tracking uses images that result from the projection of the 3D world into 2D image
space. Reconstructive approaches try to regain the 3D structure of the scene that is lost due to
this projection. In most cases, 3D reconstruction relies on correspondences between at least
two images. The complexity of the task depends on the available knowledge about the ca-
mera, that captures those images. Most approaches are computationally complex and therefore
inefficient[Lee06].

Many approaches use a training phase, which establishes the structure of the environment
(cp. [GRS+02, GL04]). Applications applying such approaches only work within the environ-
ment explored during the training phase and are therefore unsuitable for this thesis.

A more adequate approach for this thesis utilises the camera’s pose, too, not only the corres-
pondences. This draws the attention to triangulation.

10One inherent property of the two axes is, that their norms are equal.
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Figure 3.2: Principle of Triangulation. Reconstruction of a 3D world point given by the inter-
section of two rays.

3.6.1 Triangulation

Triangulation is a basic technique in computer vision, described for example by Hartley and
Zisserman[HZ04]. Triangulation is commonly used and not that complex (cp. [GRS+02, GL06,
Lee06]). A triangulation is only possible if the camera’s extrinsic and intrinsic parameters11 are
known.

In order to reconstruct a point’s 3D coordinates, triangulation requires two images which
show the point in the world from different point of views. For both points of view triangula-
tion constructs a line that connects the camera’s optical centre with the image point describing
the point in the world. In figure 3.2 the dashed part of the lines that connect the camera’s re-
presentation with the image points show this construction. As both image points describe the
same point in the world, the lines cross at this point. In reality, the lines tend to miss each other.
For this reason triangulation returns the point with the lowest distance to both lines. This thesis
calls this point intersection, in theory the lines after all intersect.

Two approaches exist that calculate the intersection, the geometric and the linear algebraic.
The geometric approach detects the shortest segment that connects both lines with each other.

The approach returns the midpoint of this segment.
The linear algebraic approach constructs two equations that describe the 3D coordinates. The

cross product of an image point with the projection of its corresponding world point always
yields zero. Triangulation uses this relationship, represented by equations 3.2 and 3.3, in order
to calculate the world point xw described by the image points x1 and x2.

x1 × P1xw = 0 (3.2)
x2 × P2xw = 0 (3.3)

Triangulation utilises a (3 × 3)-matrix containing the intrinsic camera parameters and two

11Intrinsic parameters are a camera’s focal length, its image centre point, its radial distortion parameters and the
size of the pixels it acquires in millimetres. Calibration processes provide intrinsic parameters. This thesis does
not use a calibration though, but instead assumes them to be fixed.

The camera’s pose, given as translation and rotation, equates to the extrinsic parameters.
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(3 × 4)-matrices which contain the extrinsic parameters of one of the images12. It constructs
two projection matrices P1 and P2 by matrix multiplying the intrinsic matrix with one of the
extrinsic matrices. The approach turns the cross product into another matrix multiplication
by transforming x1 and x2 into cross product matrices. Then, it matrix multiplies these two
matrices with their corresponding projection matrices, resulting in two (3 × 4)-matrices. This
changes the equations into the kind shown by equation 3.4.

Axw = 0 (3.4)

Both equations contain entries of the sought after world point xw . In an equation of this
kind, xw is called the null space of A13. Together the two form an overdetermined system of
equations.

The two matrices are stacked into one (6×4)-matrix. A Singular Value Decomposition (SVD)
is the best method to solve systems like equation 3.4. SVD decomposes matrix A into three
matrices A = UDV T and thereby calculates, among others, the null space of a matrix. The
world point xw can be found in the last row of V T 14.

Within the context of this thesis, all information that a triangulation requires, is available. As
it is the least computationally expensive method, this thesis chooses triangulation in order to
estimate 3D coordinates . It uses the algebraic method. Though the algebraic and the geometric
approach work in a completely different way, the only notable difference in terms of their
evaluation is, that the algebraic method functions with multiple cameras as well15.

Triangulation is the only reconstructive approach that is efficient as well as accurate. Other
approaches are much more complicated.

3.7 Simultaneous Localisation and Mapping

Simultaneous Localisation and Mapping (SLAM) creates a map that represents the environ-
ment that the user explores and localises the user within this map. Many researchers have
explored SLAM, especially during the past decade. Riisgard and Blas[RB] for example compo-
sed an introduction to the topic, referring among others to the original creators of this approach
Durrant-Whyte and Leonard.

In SLAM the results of one task, localisation or mapping, support the calculations of the
other task. Both processes depend on the knowledge of the other. The map can only be build
by assigning a 3D position to the features found in the images. On the other hand, calculating
these 3D positions requires the camera’s pose, which the localisation estimates. The localisation

12Equations 3.2 and 3.3 represent the same dependence. They differ only in the image they are based upon and its
corresponding camera’s pose. In the following, this thesis transposes both equations in the same way. Equa-
tion 3.2 always uses the first image’s point and camera’s pose, equation 3.3 uses those of the second image. The
intrinsic parameters are fixed as both images are taken by the same camera.

13A null space contains vectors that fulfil equation 3.4. This means, that if a matrix is matrix multiplied with one of
its null space’s vectors, the result is always zero. As xw is part of the null space of A, calculating the null space
implies calculating xw .

14D contains the positive singular values of A on its diagonal. The singular values are sorted according to their
size, starting with the largest in the first row. The last column of V contains the null space only if at least one
of the singular values equals zero. D has the same dimension as A. This means that the diagonal “ends” in the
forth row. The singular values of the two last rows are not a part of D . In such a case, the assumption holds that
these missing singular values equal zero. The triangulation will always be able to calculate xw .

15Leibe: Computer Vision Lecture in 2009, “3D Reconstruction I”, http://www.vision.ee.ethz.ch/
~bleibe/multimedia/teaching/cv-ws08/cv08-part16-reconstruction2-6on1.pdf, visited in
May 2010
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builds upon the 3D world points from the map in order to carry out the correspondence search
and subsequent pose calculation.

Although SLAM has recently been applied to computer vision (cp.[CGKM07, CM09, KM09]),
SLAM was originally developed for and is most commonly applied in robotics[DRMS07]. Au-
tonomous robots plan their paths through their environment. This planning and the sub-
sequent navigation are successful16 only if the robot knows his position within the environment
and which obstacles to avoid.

The dependency of localisation and mapping on each other is usually solved by using an
estimated pose. A robot’s odometry provides enough information to approximate its current
pose based on its previous one. Vision-based SLAM offers no such information. Different
possibilities exist to solve this initial problem. For instance, in Klein’s and Murray’s[KM09]
approach the user has to provide a stereo view of the scene. This thesis uses a marker. Another
difference between SLAM for robotics and computer vision is that robots usually use a laser
scanner instead of a video-camera to gather features in the environment.

SLAM works in unknown environments without previous knowledge. In theory, the envi-
ronment can be arbitrarily extended. This slows a system down, due to the high amount of
features which has to be processed. SLAM provides as much knowledge about the environ-
ment as could ever be needed. As SLAM has very high requirements, especially concerning
the computational resources, it is most commonly used indoors.

3.7.1 System Structure

A reliability measurement commonly builds the core of a SLAM system. This means that SLAM
judges the reliability of the data it gathers. According to this reliability values, it weighs the
influence of the data on the pose calculation. An Extended Kalman Filter (EKF) or a particle
filter serve this purpose.

An EKF predicts the pose as the time advances and then corrects this pose with new mea-
surements. The prediction and the measurement yield two different poses. An uncertainty
measure describes how reliable both poses are. An EKF then weighs both poses depending on
their uncertainty and calculates a new one.

A particle filter, as mentioned by Zhou et al.[ZDB08], develops several hypotheses about
the state of a system. Regarding SLAM, this means that a particle filter calculates all possible
poses and then follows them. It weighs the poses, thereby deciding how probable they are and
which one is the most likely at a certain time. Like an EKF, a particle filter predicts how the
poses change. According to the observations, it adapts the predicted poses and weighs them
anew. A particle filter takes into account that it is impossible to calculate the true pose. It can
only be approximated.

This thesis uses neither an EKF nor a particle filter. The structure of the system is complex
enough as it is, and applying an EKF or a particle filter is too computationally expensive.

According to Riisgard and Blas[RB], an average SLAM system follows this process:

1. It predicts the camera pose.

2. It extracts features.

3. It searches for correspondences.

4. It estimates the current pose using the correspondences.

16In this context successful means that the robot can (a) fulfil the task he is given, for example reach a goal, (b) avoid
obstacles and (c) does not get stuck in a way that requires external assistance.
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5. It updates the pose and its probability.

6. It updates the features in the map and adds new features to the map.

This process is very similar to the general markerless tracking approach presented in the be-
ginning of this chapter. This thesis develops a system which integrates most of these stages.
The prediction is omitted, though. There is no data available that could provide a sensible
prediction. Therefore, the system does not require a probability either. The system is however
structured in a way which makes it easy to include a prediction, if the need or possibility arises.
In Mobile AR, additional sensors like a compass could enable a prediction.
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This thesis builds a markerless tracking system based upon the approaches presented in the
previous chapter. The previous chapters discussed the system’s requirements and goals, ge-
neral approaches to tracking and specified approaches that can solve the different tasks of a
markerless tracking system. The first section of this chapter integrates these approaches into a
system that fits the goals, and describes the processes of this system. Section 4.2 presents the
concrete architecture of the system. Then, this chapter further details the stages of the system.
Section 4.3 presents the initialisation and section 4.4 the markerless tracking process.

4.1 System Overview

The system divides into three steps, which commonly frame tracking applications: initialisa-
tion, tracking and shutdown. Within this thesis, the tracking step refers to markerless tracking.
Tracking applications execute them in the presented order. This system realises the steps as
states, which represent the processes during a certain stage of the system. The states are mu-
tually exclusive. For every frame, that the camera captures, the system executes the procedures
inherent to one of the states.

The initialisation uses a marker to avoid the initial tracking problem that the previous chapter
introduced. A marker enables a pose calculation without using correspondences. Thereby, the
marker solves the mutual dependence of pose estimation and 3D reconstruction on each others
results.

A marker establishes a world coordinate frame that has the centre of the marker as its origin.
This system calculates all 3D positions and camera’s poses based on this world coordinate
frame. As a marker’s measurements are known, the system calculates the camera’s pose using
the marker’s corners. The marker that this thesis uses is a square with a side length of eighty
millimetres. As the origin is the centre and the marker has no depth, the 3D positions of the
corners are given as: (40, 40, 0) for the upper right corner, (40,−40, 0) for the lower right corner,
(−40,−40, 0) for the lower left corner and (−40, 40, 0) for the upper left corner. The four corners
provide the minimum of four features that are necessary for a pose estimation. The usage of a
marker thus simplifies the calculation of the camera’s pose.

Using the resulting camera’s pose, the initialisation prepares the markerless tracking. As
long as the system detects the marker, it builds a map of features. When the marker disappears,
the map hopefully suffices as a basis for the pose estimation.

In order to build the map, the initialisation detects features in the current frame and calcu-
lates their descriptors. The map stores the features, their descriptors and the camera pose of the
frame, in which they were found. The map marks the features as incomplete; their 3D position
is unknown.

From the second frame onwards, the initialisation calculates correspondences between the
features detected in the current frame and the incomplete features in the map. It triangulates
these correspondences. The map points store the resulting 3D positions and are now complete.
They resulting map of 3D points represents the environment.
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As soon as the map contains points with 3D positions, it suffices as a basis for the pose
estimation. Problems in markerless tracking can still arise, if a new frame does not include
any of these known points. This is a general problem of markerless tracking which cannot be
avoided.

When the system no longer detects the marker, markerless tracking takes over.
The tracking process bears a resemblance to the preparations carried out during the initia-

lisation. First, tracking detects features in the current frame and calculates their descriptors.
Then, it executes a correspondence search. The correspondence search divides the detected
features into three groups:

1. Features, which correspond to points, whose 3D positions are known.

2. Features, which correspond to points, whose 3D positions are unknown. These are all
points which were, until now, detected in only one frame.

3. Features, which appear for the first time.

The first group builds a set of correspondences that the pose estimation receives as input.
The second grouping results in another set of correspondences. For every correspondence,

the system triangulates the 3D position of the point in the world that the correspondence re-
presents. The system changes the map entries of these features. With their 3D positions esta-
blished, these points can be used for future pose estimations whenever they reappear.

The system creates map entries for the third group of features, which store the feature, its
descriptor and the camera’s pose of the current frame.

There a two situations, in which the system changes to shutdown. The first occurs when
the user quits the application. It is the regular conclusion of the application. The second is
irregular. It happens when the tracking fails. Tracking failure takes place when the tracking
does not find enough correspondences and consequently cannot calculate the camera’s pose.

Shutdown concludes the application by closing the video-stream and freeing the allocated
memory. These tasks are not connected to the tracking process itself. Therefore, this chapter
does not elaborate the shutdown process any further.

4.2 Architecture

Figure 4.1 depicts the architecture of the system as a class diagram. It contains only the classes,
associations, attributes and methods that are most relevant to the concept. It omits parts that
are not necessary in order to understand the concept.

The model contains formats specified by a POSIT library1 for the image points and world
points, POSITImage and POSITObject.
MobileTracking is the starting point of the system. It defines the system’s main loop and

catches and processes the user’s input. It creates the system’s StateManager, which forms
the core of the system. The StateManager manages the information flow of the system, es-
pecially between the States. The relationship between the StateManager and the States
represents the strategy pattern.

The StateManager gathers the video-frames and handles the States. It initialises them
and presents them with the information they require. It invokes a State while it is active
and quits it when the State changes. At any given time the StateManager ensures that

1http://www.cfar.umd.edu/~daniel/Site_2/Code.html, visited in May 2010
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«singleton»
Map

- mapPoints : list<MapPoint*>*
- incompletePoints : list<MapPoint*>*
+ addFeatures ( features : vector<InterestPoint*>*, cameraTransf : Matrix* )
+ fullyInitialisePoints ( incompletePoints : vector<InterestPoint*>*, cameraTransf : Matrix* )

MapPoint
- mapX : int
- mapY : int
- mapZ : int
- fullyInitialised : bool
- feature : InterestPoint
- observed : InterestPoint
- cameraTransf : Matrix*

InterestPoint
- used : bool
- x : double
- y : double
- orientation : double
- descriptor : double*

Triangulation
- intrinsic : Matrix*
+ processCorrespondences ( correspondences : vector<MapPoint*>*, cameraPose : Matrix* )
+ triangulate ( point : MapPoint, extrinsic : Matrix* )
+ stackMatrices ( mat1 : Matrix*, mat2 : Matrix* ) : Matrix*

contains

1

*

stores

1 1..2

receives

1

*

uses

1

*

triangulates

1

*

Figure 4.2: The concept for the map and its points.

exactly one State is active. The states Initialisation and Tracking execute the tracking
processes, while Shutdown merely concludes the system.

The states Initialisation, Tracking and Shutdown have three methods in common:
init, run and cleanup. Init initialises a State. For Initialisation, it loads the in-
formation about the marker and sets all variables describing it. The StateManager calls a
State’s cleanup-function whenever the system changes to another State. Cleanup deallo-
cates the memory.

For every frame, the StateManager executes the run-function of the active State. Run
receives the frame as input. For Initialisation and Tracking run contains the tra-
cking process, that sections 4.3 and 4.4 describe. Run applies the functionality that classes
such as FeatureDetection or Triangulation provide. It initiates the search for fea-
tures in the frame through FeatureDetection and the detection of correspondences through
Correspondence. One instance of Correspondence provides the functionality for a corres-
pondence search. It represents the calculation of a set of correspondences resulting from one
correspondence search rather than a pair of corresponding features.
Run estimates the camera’s pose and passes the features and the correspondences to the

Map.

4.2.1 Mapping

Figure 4.2 shows the most important classes of the mapping process and their relationships.
Map wraps the detected features into MapPoints. The SURF feature detection computes a

vector of InterestPoints. An InterestPoint contains the necessary information about a
feature, like its image position as x- and y-coordinate, its orientation and its descriptor.
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For every InterestPoint that does not correspond to a previously detected
InterestPoint, the Map creates a MapPoint. It sets the MapPoint’s attribute
cameraTransf to the camera’s pose of the frame in which the InterestPoint was de-
tected. Additionally, the MapPoint holds a reference to the detected feature. This is all
the information that is available at the feature’s first detection. Therefore, the MapPoint is
incomplete and Map sets the fullyInitialised-flag to false.

Whenever a feature reappears, the corresponding MapPoint stores a reference to the
InterestPoint describing the feature in its attribute observed. Both Triangulation and
POSIT need the observed feature for their calculations.

The Map calls Triangulation whenever features appear for the second time.
Triangulation receives a set of MapPoints and the current camera’s pose as input.
Using the two image points of a MapPoint and their corresponding camera’s poses,
Triangulation calculates the 3D position of a MapPoint.

4.3 Initialisation

When the system starts, the StateManager creates the Initialisation state. The system
presents the initialisation with a file describing the marker to expect. For every frame that
the system acquires during the initialisation, initialisation executes the process that figure 4.3
describes.

First, the system uses ARToolKit[KB] to decide, whether a marker is visible in the current
frame. For this purpose, ARToolKit converts the current frame into a binary image according
to a given threshold. It detects all square structures in that binary image. ARToolKit presents
the application with the number of square structures it detects and the structures themselves.
If the frame contains no such structures, the process concludes.

If the frame contains square structures, the application verifies whether one of the structures
is the sought marker. It examines the inner square of the structure and checks if the content
matches the expected content. If none of the structures fit, the process for this frame is finished.

If the process, however, provides enough evidence for the correct detection of a marker, the
application calculates the camera’s pose. For this purpose, it again uses ARToolKit. ARToolKit
uses the known world coordinates of the marker’s corners and their image representation to
calculate the camera’s pose. ARToolKit computes the transformation of the marker in camera
coordinates and not, as this thesis requires, the camera’s pose in marker coordinates. ARToolKit
provides the functionality to change this, though.

Then, the preparatory work for the markerless tracking starts.
The system extracts SURF-features from the frame and calculates their descriptors. If a map

does not exist yet, the system creates one. For every feature, the map produces a MapPoint,
which references this feature and stores the camera’s pose calculated by ARToolKit. If a map
exists, the system compares the entries to the detected features, searching for correspondences
between them. If a MapPoint corresponds to a feature, the correspondence search assigns the
feature to this MapPoint as its observed feature.

The correspondence search splits the features into the previously described three groups and
passes them to the map. For features without correspondences, the map creates a MapPoint
and adds it to its list of incomplete points. It initiates the triangulation of correspondences
without a 3D position. It adds the triangulated 3D positions to the corresponding MapPoints
and moves them from the list of incomplete points to the list of complete ones.

When the process comes to a close, the system has to decide, whether the next frame should
be processed by the initialisation as well or if the system should change to markerless tracking.
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[potential markers detected]

detect markers

 confirm
detection

[marker confirmed]

[more potential 
markers]

[no marker]
[no more 
potential 
markers]

[no marker]

calculate
camera's pose

detect SURF
features

calculate SURF
descriptor

[no map exists]

[map exists]

find
correspondences

update mapcreate map

Figure 4.3: Overview of the process during the initialisation.

If the system detected a marker in the current frame, it continues with the initialisation. If it
detected no marker, the decision depends on whether one was visible in the previous frame or
not. If a marker was detected previously, the markerless tracking takes over. Otherwise, the
initialisation did not start yet. The system keeps waiting for the appearance of a marker.
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4.4 Tracking

The tracking process is very similar to the initialisation process. Their calculations serve the
same purposes. The major difference is that the initialisation uses a marker to calculate the
camera’s pose, whereas the tracking uses correspondences and POSIT. This difference changes
the order of calculations and affects the information flow. Figure 4.4 depicts the tracking pro-
cess.

The system presents the tracking process with the current frame. The process starts by de-
tecting features in the frame and calculating their descriptors. The descriptors present the basis
for the correspondence search. The correspondence search splits the features into the three,
previously mentioned groups.

POSIT uses the correspondences with known 3D positions to estimate the camera’s pose. If
less than four such correspondences exist, the tracking fails. Instead of exiting the application,
as this system does, other options are possible.

One is that the markerless tracking continues to process the frames. When enough features
reappear, it calculates the camera’s pose again, even though it calculated none in the previous
frames. However, it is impossible to predict if and when features reappear. It is even possible
that correspondences will never be found again, for example if the illumination of the scene
drastically changed. Therefore, this approach is discarded.

Another option is to change back to the initialisation and notify the user that the application
again requires the marker to be visible. This approach can be advantageous, but it depends
on the AR application that uses the tracking system. Applications that favour this approach
can be easily realised with the system presented here. Nothing but the State that the system
changes into after a tracking failure has to be changed.

Knowing the camera’s pose in the current frame enables the tracking to triangulate the cor-
respondences without 3D positions.

The system updates the map using the triangulated features and all new features.
A user’s input can end the application at all times.

4.5 Contribution of the Implementation

As it impossible to implement all the approaches from scratch, the system relies on libraries
for some of them. Rather than the individual approaches, the implementation contributes a
system with easily exchangeable components. If a more advantageous approach is discovered,
it can easily be integrated into the system. As long as new component uses a similar input and
delivers the expected results, it can collaborate with the remaining components. The system
can be easily expanded as well.

The system combines different approaches to achieve a working markerless tracking solu-
tion. The implementation realises the theoretical concepts in praxis. Unexpected issues can
surface during the execution of a system. On the other hand, problems that researchers expect,
might never occur.

It is impossible to evaluate a concept without testing it in praxis. The implementation en-
ables a full analysis and evaluation of the chosen approaches. This thesis is able to judge the
cooperation between the different components.

The value of the implementation does not depend on the individual libraries it uses or the
approaches to the different tasks, but on the combination of them. The structure of the system
as a whole permits this thesis to draw conclusion about the relationships between the different
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tasks of a markerless tracking system. Thereby, this thesis can determine which tasks compli-
cate the development of Mobile AR.
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detect SURF
features

calculate SURF
descriptors
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without 3D position

[found correspondences]

[no correspondences]

Figure 4.4: Processing of a frame during markerless tracking.
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This chapter describes the implementation of the architecture presented in the previous chap-
ter. First, this chapter contemplates the platform, that this system uses in section 5.1. Then,
section 5.2 introduces the framework and section 5.3 the basic parts of the application, that
organise the application flow. In order to enhance the clarity of this chapter, section 5.3 pre-
sents the processes of the initialisation and markerless tracking as a whole without going into
details about the tracking functionality they use. The following sections examine the tracking
components. They detail the marker tracking, the feature detection and description, the corres-
pondence search, the triangulation and the pose estimation.

5.1 Platform

Before presenting the implementation itself, this thesis briefly discusses the platform it uses.
The implementation takes place on a Sony Vaio VGN-FE31M laptop. This means, that even

though the laptop cannot keep up with a state-of-the-art laptop, the application has far more
computational power available than a state-of-the-art mobile phone provides.

The laptop features a 1.83 gigahertz Intel Core 2 Duo T5600 processor, whereas a contempo-
rary mobile phone like Motorola’s droid1, Nokia’s N9002 or Apple’s iPhone3Gs3 has a proces-
sor with a clock rate of around 600 megahertz. Only Toshiba’s TG014 differs from this mean
with one gigahertz of processing power.

The laptop has one gigabyte random-access memory, a state-of-the-art mobile phone has 512
megabytes at most.

The laptop uses windows XP professional as its operating system. Microsoft Visual Studio
2005 is the development environment, because it works with all libraries.

This thesis uses a Microsoft Live Cam VX-30005 to capture the video-stream. The camera
adjusts to different lighting conditions, for example if the camera moves from a bright area to
a darker one, it will adjust the contrast so that details of the scene are visible in both situations.
The camera offers resolutions similar to a mobile phone’s camera. The highest resolution it
provides for capturing a video is 640× 480. Mobile phones feature approximately the same re-
solution when capturing a video. Some offer resolutions that are a little bit higher, for example
Nokia’s N900 has a camera with a resolution of 800 × 480 when it captures a video-stream.
Cameras of mobile phones are able to capture about 25 frames per second.

Considering the video’s resolution and quality, this thesis mimics the conditions on a mo-
bile phone. In comparison to a mobile phone, the system has more than twice the amount of
processing power available.

1http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/
Mobile-Phones/Motorola-DROID-US-EN, visited in May 2010

2http://maemo.nokia.com/n900/, visited in May 2010
3http://www.apple.com/iphone/, visited in May 2010
4http://www.toshibamobilerevolution.com/, visited in May 2010
5http://www.microsoft.com/hardware/digitalcommunication/ProductDetails.aspx?pid=
001&active_tab=overview, visited in May 2010
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5.2 Framework

Before the application realises the concept presented in the previous chapter, it has to provide
a framework, which manages windows, gathers the video-stream and organises the system.

1 int main(int argc, char **argv) {
2

3 glutInit(&argc, argv);
4

5 //start Application, initialise camera, video and a window
6 StateManager::instance()->startApplication();
7

8 //start to capture the video
9 arVideoCapStart();

10

11 //set up basic functions of the application
12 argMainLoop(mouseEvent, keyEvent, mainLoop);
13

14 return 0;
15 }

Listing 5.1: The application’s main function.

The application’s main function, presented by listing 5.1, builds this basis. It initialises the
OpenGL Utility Toolkit (GLUT)6, which provides a window management system. Then, it
creates the StateManager. StateManager is a singleton, which ensures that the application
instructs only one instance with the system’s management. With the help of ARToolKit[KB],
StateManager’s method startApplication connects the application with the video-
camera. It loads the camera’s data and opens a video path. It allows the user to choose
the camera’s resolution and other parameters. StartApplication creates and opens a
window which the application uses to display the video. It creates and initialises the state
Initialisation, which marks the starting point of the tracking. Section 5.3.1 presents the
workings of Initialisation.

In the next step, the application starts recording the video.
Then, it sets up its three main methods. Two methods react to the user’s input, keyEvent to

the keyboard’s, mouseEvent to the mouse’s. At any time during the execution of the program,
these methods process the input and change the system accordingly. So far, the application uses
the keyboard’s input to exit the application. If the user’s input triggers the system’s shutdown,
keyEvent changes the state directly to Shutdown and executes the shutdown. The third me-
thod, mainLoop, represents the main procedure of the application. It runs constantly, waiting
for new frames to arrive. When a frame arrives, MainLoop displays it. MainLoop then de-
termines in which state, either initialisation or tracking, the application is. It decides whether
it needs to change this state. The system can change from initialisation to either tracking or
shutdown and from tracking to shutdown.

Program failures, which prohibit the application from working, request a change to the state
Shutdown. MainLoop detects such requests. This means that, unlike the user’s shutdown
requests, mainLoop handles the shutdown of the system after program failures.

6http://www.opengl.org/resources/libraries/glut/, visited in May2010
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When mainLoop has determined the application’s state, and changed it if necessary, it ini-
tiates that state to carry out its procedures. MainLoop passes the current frame to the State’s
run-method.

5.3 States

A State’s run-method provides its functionality. For every frame, the system executes either
Initialisation’s or Tracking’s run.

5.3.1 Initialisation

Listing 5.2 presents Initialisation’s run. It starts with the tracking of a marker,
which determines the current camera’s pose and stores it as the matrix mCameraTransf.
Initialisation’s run takes care of the marker tracking. The marker tracking process re-
quires a description of itself. Section 5.4 discusses the excerpt of run that deals with the marker
tracking. If the marker tracking finds a marker, run continues as described below. If not, run
stops and the application waits for a new frame.

1 void Initialisation::run(ARUint8* frame) {
2 //marker tracking as shown in algorithm 4, determines mCameraTransf
3 std::vector< InterestPoint* >* newFeatures =
4 FeatureDetection::instance()->detect(frame, true);
5

6 if(mSawMarker){
7 std::vector<MapPoint*>* correspondences =
8 Correspondence::searchForCorrespondences(
9 newFeatures, false);

10 std::vector<MapPoint*>* incomplete =
11 Correspondence::searchForCorrespondences(
12 newFeatures, true);
13 Map::instance()->fullyInitialisePoints(
14 incomplete, mCameraTransf);
15 }
16 Map::instance()->addFeatures(newFeatures, mCameraTransf);
17 mSawMarker = true;
18 }

Listing 5.2: Initialisation’s run-procedure.

Run uses FeatureDetection’s method detect. It passes the current frame to detect.
Section 5.5 depicts the workings of detect. Detect returns a vector of InterestPoints, in
which every point represents one detected SURF-feature.

When the features are available, run determines if the marker was visible in the previous
frame.

If it was, a map already exists. Run then calculates correspondences between the
features detected in the current frame and the points in the map. For this purpose,
Correspondence’s method searchForCorrespondences receives the detected features.
If SearchForCorrespondences detects a corresponding pair, it always stores the fea-
ture as the observed feature of the corresponding map point. The additional input of
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searchForCorrespondences, the boolean variable incomplete, denotes whether the cor-
respondence search should use the points in the map with a known 3D position or those wi-
thout.
Run determines which features correspond to points with a known 3D position first. The

initialisation does not use these correspondences, but it is necessary to mark these features.
Otherwise, run mistakes them for new features. Afterwards, run finds the features corres-
ponding to map points with unknown 3D position. Run passes these correspondences to the
map. Map’s method fullyInitialisePoints then calculates the 3D positions of the points.
Run then adds all new features to the map. Unlike the previous steps, this one does not

depend on the presence of a marker in a previous frame. However, if a marker has been found
previously, all features, for which run has detected a correspondence, are marked as a part of
the map. An InterestPoint’s boolean-variable used serves this purpose. Thus, the map
determines for which features no correspondence exist and includes them as new map points.
Aside from the features, run provides the map with the camera’s pose.

In the end, run sets the flag mSawMarker to true. Thereby, it indicates that a marker was
detected.

5.3.2 Tracking

Tracking’s run bundles the markerless tracking routines. Listing 5.3 shows the resulting tra-
cking process. Run uses FeatureDetection’s detect to identify SURF-features within the
frame. Then, it determines which of these features are part of the map. Correspondence’s
searchForCorrespondences establishes two sets of features with correspondences, one
with and the other without known 3D positions.

1 void Tracking::run(ARUint8* frame) {
2 //detect features
3 std::vector< InterestPoint* >* newFeatures =
4 FeatureDetection::instance()->detect(frame, true);
5

6 //find correspondences
7 std::vector<MapPoint*>* correspondences =
8 Correspondence::searchForCorrespondences(newFeatures, false);
9 std::vector<MapPoint*>* incomplete =

10 Correspondence::searchForCorrespondences(newFeatures, true);
11

12 //estimate the camera’s pose
13 Posit estimation = Posit();
14 cv::Mat* cameraPose = estimation.estimatePose(correspondences);
15

16 //update the map
17 Map::instance()->fullyInitialisePoints(incomplete, cameraPose);
18 Map::instance()->addFeatures(newFeatures, cameraPose);
19 }

Listing 5.3: Tracking’s run-method.

The correspondences with known 3D positions provide the foundation of the pose estima-
tion. Posit’s estimatePose approximates the camera’s current pose.

Using this pose, Map triangulates 3D positions for the correspondences that are in need of

42



5.4 Marker Tracking

one. Lastly, run adds those features to the map, which the tracking observed for the first time.
It assigns the camera’s pose to these features.

5.4 Marker Tracking

The marker detection that listing 5.4 shows is a part of Initialisation’s run. It uses
ARToolKit[KB]. ARToolKit’s method arDetectMarker detects marker-like structures. It re-
ceives a frame and a threshold as input. Using the threshold, arDetectMarker transforms
the frame into a binary image. It finds black squares. ArDetectMarker stores these marker-
like structures and the number of structures in the two variables it receives, markerInfo and
markerNr. Among others, markerInfo contains the image coordinates of the centre of the
marker and of its corner points. It stores the id of the marker that the structure resembles the
most and a confidence value. The confidence value represents the probability that the found
structure is a marker.

If arDetectMarker does not find any marker-like structures, Initialisation’s run
continues no further. Before run stops and returns, it checks whether it detected a marker
previously. If it did, it requests the application to change to the state Tracking.

If arDetectMarker finds marker-like structures, it is necessary to examine them further as
lines 12 to 28 show in listing 5.4. The application validates whether one of the structures is the
sought after marker. The validation procedure compares the id of the structure with the id of
the marker. If they are equal, the procedure memorises the structure. If another structure with
the same id exists, the application compares the confidence values of both. It keeps the one
with the higher probability.

If the validation confirms none of the structures as the marker, the application stops run’s
execution. It again determines whether a change to tracking is necessary.

Whenever the validation affirms the detection of a marker, ARToolKit’s method
arGetTransMat calculates the transformation between the marker and the camera.
ArGetTransMat computes the marker in camera coordinates and not, as this system re-
quires, the camera in marker coordinates. Therefore, the application employs ARToolKit’s
arUtilMatInv to estimate the opposed transformation. The system uses this transformation
to describe the camera’s pose.

5.5 Feature Detection and Description: SURF

The class FeatureDetection, which like StateManager is implemented as a singleton,
takes care of the detection of SURF-features and calculates the descriptors for these features.
For the SURF detection and description, the system applies the library provided by the Compu-
ter Vision Laboratory of the ETH Zürich7, where SURF was developed[BETG08]. With respect
to the detection’s and description’s parameters, FeatureDetection largely follows the sug-
gestions provided by Bay et al.[BETG08].

The method detect, as in listing 5.5, utilises the library to detect features and compute their
descriptors.

First, detect creates the integral image of the frame. Both feature detection and description
employ the integral image to heighten the efficiency. The library’s fast hessian detection calcu-
lates the features and stores them as IPoints. FeatureDetection’s constructor defines the
parameters for the fast hessian detector.

7http://www.vision.ee.ethz.ch/~surf/, visited in May 2010

43

http://www.vision.ee.ethz.ch/~surf/


5 Implementation

1 ARMarkerInfo* markerInfo;
2 int markerNr;
3

4 //detect the markers in the video frame
5 if( arDetectMarker(mFrame, mThresh, &markerInfo, &markerNr) < 0 ) {
6 if(mSawMarker) { //currently no marker, but one was detected

previously
7 mManager->registerChange(1);//change to markerless tracking
8 }
9 return;

10 }
11

12 //verify the detection of a marker
13 int k = -1;
14 for(int i = 0; i < markerNr; i++ ) {
15 if( mPatternId == markerInfo[i].id ) {//compare id
16 if( k == -1 ) {
17 k = i;
18 } else if( markerInfo[k].cf < markerInfo[i].cf ) {//compare

confidence value
19 k = i;
20 }
21 }
22 }
23 if( k == -1 ) { //if no marker was found
24 if(mSawMarker) { //but one was found previously
25 mManager->registerChange(1);//hand over to tracking
26 }
27 return;
28 }
29

30 // calculate transformation between the marker and the real camera
31 double (*patternTransf)[3][4] = new double[1][3][4];
32 arGetTransMat(&markerInfo[k], mPatternCenter,
33 mPatternWidth, *patternTransf);
34

35 double (*cameraTransf)[3][4] = new double [1][3][4];
36 arUtilMatInv(*patternTransf, *cameraTransf);
37 mCameraTransf = new cv::Mat(3,4,CV_64F, cameraTransf);

Listing 5.4: Marker tracking procedure.

The library commissions the class SURF with the feature description. Detect creates an ins-
tance of SURF, which it calls descriptor. For every IPoint, detect uses descriptor to
create the IPoint’s description. First, detect assigns the IPoint to descriptor. Then, it
calculates the orientation of the IPoint. The IPoint stores this orientation. Finally, detect
computes the description by using the method makeDescriptor. MakeDescriptor sup-
plies the IPoint with the descriptor. The tracking can then access the descriptor through its
IPoint.

The application needs to mark an IPoint when it detects a MapPoint corresponding to it.
As the class IPoint from the library does not provide such an option, the application creates a
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5.6 Correspondences: SSD

1 std::vector< InterestPoint* >* FeatureDetection::detect(ARUint8 *frame)
{

2 //compute integral image
3 surf::Image* im = new surf::Image(y, x);
4 im->setFrame(frame);
5 surf::Image* integralI = new surf::Image(im, false);
6

7 vector<surf::Ipoint>* features = new std::vector< surf::Ipoint >();
8 features->reserve(1000);
9

10 //extract features using fast Hessian
11 surf::FastHessian fastHessian(integralI, *features, mThresh, false,
12 mInitLobe*3, mSamplingStep, mOctaves);
13 fastHessian.getInterestPoints();
14

15 //initialise descriptor
16 surf::Surf descriptor(integralI, false, mUpright, false, mIndexSize);
17

18 //compute descriptor and orientation for each feature
19 for(unsigned i = 0; i < features->size(); i++){
20 descriptor.setIpoint(&(*features)[i]);
21 descriptor.assignOrientation();
22 descriptor.makeDescriptor();
23 }
24

25 std::vector< InterestPoint* >* featuresToReturn =
26 new std::vector< InterestPoint* >();
27 featuresToReturn->reserve(features->size());
28 for(int i=0; i<features->size(); i++)
29 featuresToReturn->push_back(new InterestPoint((*features)[i

]));
30

31 return featuresToReturn;
32 }

Listing 5.5: Detect-method, the core of the feature detection.

specialisation of IPoint, which it calls InterestPoint. For every IPoint, detect creates
an InterestPoint. It returns these InterestPoints.

5.6 Correspondences: SSD

Correspondence is responsible for the detection of correspondences. Its method
searchForCorrespondences, which listing 5.6 depicts, receives the features detected
in the current frame. It then fetches the entries of the map. It chooses either the list of in-
complete points or the points with known 3D positions. It makes this choice according to the
boolean input incomplete.
SearchForCorrespondences iterates over all MapPoints. For every MapPoint, it resets

the threshold, because previous iterations might have changed it. Then, it peruses all features
it received. For every feature, it computes the SSD of that feature and the MapPoint’s feature.
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5 Implementation

1 std::vector<MapPoint*>* Correspondence::searchForCorrespondences(
2 std::vector< InterestPoint* >* features, bool incomplete) {
3

4 double threshold = 0.01;
5 std::list< MapPoint* >* existingPoints = new std::list< MapPoint

*>();
6 if (incomplete) {
7 existingPoints = Map::instance()->getIncompletePoints();
8 } else {
9 existingPoints = Map::instance()->getMapPoints();

10 }
11 //stores MapPoints for which the search detects a correspondence
12 std::vector< MapPoint* >* correspondences = new std::vector<

MapPoint* >();
13 correspondences->reserve(300);
14

15 for(std::list<MapPoint*>::iterator i= existingPoints->begin();
16 i!=existingPoints->end(); i++) {
17

18 threshold = 0.01;
19 for(unsigned int j = 0; j < features->size(); j++) {
20 if((*features)[j]->getUsed() == true) {
21 continue;
22 }
23 double corresponding = ssd(
24 (*features)[j]->ivec,(*i)->getFeature()->ivec);
25 if(corresponding < threshold) {//potential

correspondence
26 threshold = corresponding;
27 (*i)->setObservedFeature((*features)[j]);
28 }
29 }
30 if(threshold < 0.01) {//correspondence was found
31 correspondences->push_back(*i);
32 (*i)->getObservedFeature()->setUsed(true);
33 }
34 }
35

36 return correspondences;
37 }

Listing 5.6: The method that finds correspondences between map points and features.

SSD uses the descriptors of the features, as presented by listing 5.7. It iterates over all sixty-
four values of the descriptors. For all of them, it subtracts the second descriptor’s value from
the first. It squares the resulting values and adds them to the result.

SearchForCorrespondences defines two features as corresponding if the SSD of their
descriptors is lower than 0.01. That two features fulfil this condition does not mean that they
are a correspondence, only that it is likely. This thesis chooses 0.01 as a threshold, because it
provided reliable results. The threshold is not so high that it produces many wrong correspon-
dences and it is not so low that it misses correspondences.
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5.7 3D Reconstruction: Triangulation

1 double Correspondence::ssd(double *des0, double *des1) {
2

3 double ssd = 0.0;
4 for(int i = 0; i < 64; i++){
5 ssd += (des0[i] - des1[i]) * (des0[i] - des1[i]);
6 }
7 return ssd;
8 }

Listing 5.7: Calculation of the ssd of two descriptors.

If searchForCorrespondences finds a correspondence, it assigns the feature to the
MapPoint as its observedFeature.

To ensure the detection of the most likely correspondence, searchForCorrespondences
saves the SSD of a correspondence. It uses the SSD as a threshold while it searches for a corres-
pondence among the remaining features. Whenever it detects a more likely correspondence it
uses the SSD of that correspondence as a threshold.

When searchForCorrespondences considered all features for one MapPoint,
it determines whether a correspondence exists. A correspondence exists if
searchForCorrespondences changed the threshold. In this case, it adds the MapPoint
to the vector containing all detected correspondences. The feature’s flag used shows that
searchForCorrespondences found a MapPoint corresponding to this feature. When the
application continues the search for the remaining MapPoints, used indicates that such a
feature does not have to be taken into account.

When searchForCorrespondences examined all MapPoints, it returns the vector
containing all MapPoints for which it detected a corresponding feature.

5.7 3D Reconstruction: Triangulation

The constructor of Triangulation establishes the intrinsic camera parameters as a matrix.
Triangulation’s method processCorrespondences manages the 3D reconstruction. It
works with a vector of MapPoints and the camera’s current pose. The MapPoints store an
InterestPoint from the current frame that corresponds to their original InterestPoints.
Triangulation approximates the unknown 3D position of every MapPoint using its me-

thod triangulate. Listing 5.8 presents triangulate, which receives one MapPoint and the
current camera’s pose as input.
Triangulation constructs a cross product matrix for both InterestPoints representing

a MapPoint. For InterestPoint i with the image coordinates (x , y) , the cross product
matrix looks like this: 0 −1 y

1 0 −x
−y x 0


For both InterestPoints that form the correspondence triangulate performs the fol-

lowing operations:

• It matrix multiplies the intrinsic parameters with the feature’s camera’s pose.

• It calculates the matrix multiplication of the feature’s cross product matrix with the matrix
resulting from the previous step.
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5 Implementation

1 void Triangulation::triangulate(MapPoint* point, cv::Mat* extrinsic2) {
2

3 double crossContentX1[3][3] = {{0.0, -1.0, point->getFeature()->y
},

4 {1.0, 0.0, (-1.0)*point->getFeature()->x},
5 {(-1.0)*point->getFeature()->y,
6 point->getFeature()->x, 0.0}};
7 double crossContentX2[3][3] = {{0.0, -1.0, point->

getObservedFeature()->y},
8 {1.0, 0.0,(-1.0)*point->getObservedFeature

()->x},
9 {(-1.0)*point->getObservedFeature()->y,

10 point->getObservedFeature()->x, 0.0}};
11 cv::Mat* crossMatrixX1 = new cv::Mat(3,3, CV_64F, crossContentX1);
12 cv::Mat* crossMatrixX2 = new cv::Mat(3,3, CV_64F, crossContentX2);
13 cv::Mat* extrinsic1 = point->getCameraTransf();
14

15 cv::Mat* projection1 = matrixMultiplication(mIntrinsic, extrinsic1
);

16 cv::Mat* projection2 = matrixMultiplication(mIntrinsic, extrinsic2
);

17

18 cv::Mat* p1 = matrixMultiplication(crossMatrixX1, projection1);
19 cv::Mat* p2 = matrixMultiplication(crossMatrixX2, projection2);
20

21 cv::Mat* a = stackMatrices(p1,p2);
22

23 cv::SVD* decomposition = new cv::SVD();
24 cv::Mat* v_t = new cv::Mat();
25 decomposition->solveZ(*a, *v_t);
26

27 scaleVector(v_t);
28 point->set3dPose(v_t);
29 point->setFullyInitialised(true);
30 }

Listing 5.8: Triangulate approximates the 3D position of a given map point.

• Then, triangulate stacks the two emerging matrices.

They build a new matrix with the same amount of columns (four) and twice the amount of
rows (six). Triangulate uses OpenCV’s SVD implementation8 to decompose this matrix. As
explained in section 3.6.1, the last row of V T holds the 3D coordinates. OpenCV’s solveZ
returns exactly these coordinates.

The coordinates need to be scaled, though. Triangulate scales them, so that the point’s
homogeneous coordinate is set to one. Triangulate assigns the resulting coordinates to the
MapPoint. The MapPoint is now fully initialised and as such triangulate sets the flag
fullyInitialised to true.

8http://opencv.willowgarage.com/wiki/, visited in May 2010
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5.8 Mapping

5.8 Mapping

The application uses a map to collect and manage all features. To ensure that only one Map-
instance exists, this thesis implements Map as a singleton.

The methods addFeatures and fullyInitialisePoints construct and update the Map.
AddFeatures creates MapPoints for given features. FullyInitialisePoints updates
these points by calculating their 3D positions.
AddFeatures creates a MapPoint for every feature for which no correspondence exists.

If a correspondence exists, the feature is marked as used. AddFeatures assigns the current
camera’s pose to the MapPoint. As one feature does not provide enough information about a
MapPoint, its boolean-flag fullyInitialised is set to false.
FullyInitialisePoints, shown by listing 5.9, initiates the triangulation of MapPoints.

In order to be able to do that, it depends on MapPoints that correspond to a feature in the cur-
rent frame. FullyInitialisePoints passes the camera’s current pose and the MapPoints
to Triangulation’s processCorrespondences.

1 void Map::fullyInitialisePoints(std::vector<MapPoint*> *incompletePoints
, cv::Mat* cameraTransf) {

2

3 Triangulation* t = new Triangulation();
4 t->processCorrespondences(incompletePoints, cameraTransf);
5 std::list<MapPoint*>::iterator it = mIncompletePoints->begin();
6

7 for(int i = 0; i < incomepletePoints->size(); i++){
8 if( (*it)->getFullyInitialised() == true){
9 mMapPoints->push_back(*it);

10 it = mIncompletePoints->erase(it);
11 } else {
12 ++it;
13 }
14 }
15 }

Listing 5.9: FullyInitialisePoints enables the 3D reconstruction of points.

FullyInitialisePoints moves all triangulated points from the list of incomplete points
to the list of map points. Posit uses the points in this list for pose estimation whenever they
reappear in a frame.

5.9 Pose Estimation: POSIT

The markerless tracking uses the method estimatePose to access and initiate the pose esti-
mation. EstimatePose employs deMenthon’s[DD95] POSIT library9 for the pose estimation.

The library defines the structures TObject, TImage and TCamera. TObject contains the
known world points in the scene. TImage describes the image points that correspond to these
world points. TCamera holds information about the camera. The library uses TCamera to save
the translation and rotation of the camera with respect to the scene.

9http://www.cfar.umd.edu/~daniel/Site_2/Code.html, visited in May 2010
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5 Implementation

EstimatePose gathers all information about the scene and the image. Listing 5.10 presents
estimatePose. It calls the method readPoints, which receives a two-dimensional array for
image points and creates one for world points. ReadPoints iterates over all MapPoints it
receives. For every MapPoint, it fills a row of the world point array with the 3D coordinates
of that MapPoint. It fills the same row in the image point array with the image coordinates of
the MapPoint’s observedFeature.

1 cv::Mat* Posit::estimatePose(std::vector<MapPoint*>* mapPoints) {
2

3 TObject scene = TObject();
4 TImage image = TImage();
5 TCamera* camera = new TCamera();
6 int** imagePts = InitIntArray(static_cast<int>(mapPoints->size()), 2)

;
7

8 //gather scene and image data
9 scene.objectPts = readPoints(mapPoints, imagePts);

10 //calculate remaining scene and image data
11

12 //estimate camera’s pose using the gathered data
13 POSIT(scene, image, camera);
14

15 double (*sceneTransf)[3][4] = new double[1][3][4];
16 for(int i=0; i<3; i++){
17 for(int j=0; j<3; j++){
18 (*sceneTransf)[i][j] = camera->rotation[i][j];
19 }
20 (*sceneTransf)[i][3] = camera->translation[i];
21 }
22

23 cv::Mat* pose = new cv::Mat(3,4,CV_64F, sceneTransf);
24 pose->ptr<double>(0)[3] -= (*mapPoints->begin())->getMapX();
25 pose->ptr<double>(1)[3] -= (*mapPoints->begin())->getMapY();
26 pose->ptr<double>(2)[3] -= (*mapPoints->begin())->getMapZ();
27

28 return pose;
29 }

Listing 5.10: Estimation of the camera’s pose using POSIT.

EstimatePose assigns these arrays to a TObject- and a TImage-object. Using the points
in the arrays it defines the other attributes of the objects. In order to present estimatePose
in a concise manner, these calculations are indicated only by comments in listing 5.10.

The library’s POSIT requires a TObject and a TImage as input. It uses them to estimate the
camera’s pose according to the process explained in section 3.5.1.
EstimatePose then extracts the rotation and translation out of the TCamera-object into a

matrix. As POSIT calculates the translation in relation to the first MapPoint, estimatePose
subtracts the 3D coordinates of the MapPoint from the translation vector. Thereby, it com-
putes the translation of the camera in world coordinates. EstimatePose returns the resulting
camera’s pose.
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6 Results

This chapter presents the results of this thesis. It examines the system and describes the ob-
servations made during the execution of the application in section 6.1. It then analyses the
observations in section 6.2. It discusses the observations in regard of the overall system and re-
garding the individual tasks. That section compares the implemented system to existing ones
as well. Section 6.3 assesses the results.

6.1 Observations

6.1.1 Approach

This thesis frequently executes the application. During these executions it gathers observations
and verifies them. For every component, it performs several test series. For different types of
conditions, for example different lighting conditions, it performs the test series several times.
This way, the thesis describes the average behaviour of the application as well as the range of
observations. Several occurrences confirm all statements that this section makes.

Among others, this thesis determines the processing time that the application and parts of it
take. The time measurement uses ARToolKit’s timer-function. This function calculates the time
that elapsed since the timer was reset to zero in milliseconds.

All statements relate to a video with a resolution of 320× 240 pixels, except when the resolu-
tion is explicitly mentioned to be otherwise.

6.1.2 Overall System

When the application starts, the presentation of the video runs smoothly. The user cannot
perceive any stuttering. The application searches the frames for a marker, but does not detect
one. The application’s frame rate amounts to twenty-five to thirty frames per second.

When a marker comes into view, the application slows down. During the initialisation, it
processes between three and five frames per second. The user notices stutter and the delay
in displaying the frames. Even after several hundreds of frames, the frame rate remains quite
stable. The growth of the map hardly influences the frame rate. If the map contains around
1000 points, the initialisation still exhibits a similar frame rate.

Overall, it takes around 0.16 seconds to process a frame during the initialisation. Per frame,
the time ranges from 0.1 to 0.3 seconds. Sudden changes hardly ever occur. Usually, the pro-
cessing time rises or falls slowly during a sequence of frames.

When the application no longer detects a marker, the frame rate rises to around five frames
per second. The application still displays the video with a delay, but the stuttering is less pro-
nounced. On average, the markerless tracking processes one frame in 0.1 seconds. However,
the processing time varies much more than during the initialisation. The time it takes to com-
plete the calculations varies from 0.01 to over 0.2 seconds. Sometimes the difference of the
processing time of two successive frames is so pronounced, that the user notices the change of
the delay.
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Table 6.1 compares the frame rates and the processing time of one frame during initialisation
and tracking.

Initialisation with marker Markerless tracking
average variation average variation

frame rate (frames
per second)

4 3-5 5 2-7

processing time of
one frame
(seconds)

0.16 0.1 - 0.3 0.1 0.01-0.2

Table 6.1: Frame rate of the system during initialisation and tracking in frames per second.

All in all, the processing of a frame is faster during the markerless tracking than during the
initialisation. When using a higher resolution of 640× 480, this difference manifests itself more
clearly. Such a resolution entails a lower frame rate in general, but the initialisation becomes
very slow. It processes not even one frame per second. To complete the calculations for one
frame takes almost two seconds. When the markerless tracking takes over, the frame rate rises
notably to about three frames per second.

During the markerless tracking, the application concludes itself whenever it does not find
enough correspondences to enable a pose estimation. This situation can arise at any time.
Most commonly, it happens after a sudden movement when the frame is blurred or shows a
completely new part of the scene. Apart from the user-driven exit, this was the only way a
shutdown occurred during the testing of the application.

Different lighting conditions hardly affect the application. As long as ARToolKit detects
the marker, the application works. If the environment is too dark, ARToolKit does not detect a
marker due to the defined threshold. However, problems arise if the lighting conditions change
considerably during the execution of the application. Such changes can occur for example if a
light source is switched off. In such a case, the application cannot recognise the scene anymore
and the tracking fails due to the lack of correspondences.

With every frame that the initialisation uses to enlarge the map, the basis for the marker-
less tracking improves. Approximately the first ten frames of the initialisation influence the
markerless tracking the most.

6.1.3 SURF Feature Detection and Description

Feature detection and description take up most of the processing time during both initialisa-
tion and tracking. In an average frame during the initialisation, the application detects and
describes 200 to 300 features, which takes around 0.15 seconds. During the markerless tracking
it detects between 20 and 150 features. The processing time ranges between 0.01 and 0.1 se-
conds. In a frame that shows a rather homogeneous part of the environment, the application
sometimes detects no more than twenty features within 0.01 seconds. A high-contrast frame
on the other hand may contain up to 400 features and take 0.2 seconds to process. During the
initialisation the amount of features detected per frame is higher than during the markerless
tracking. There also is less variance.

Table 6.2 overviews the observations concerning the feature detection and description.
If the user chooses 640×480 as the resolution, the amount of detected features and the proces-

sing time rise. Under this condition, the application detects up to 3500 features in one frame wi-
thin approximately two seconds. During the initialisation the average lies around 1500 features

52



6.1 Observations

Processing time in seconds Amount of features
average variance average variance

Initialisation 0.15 0.1-0.17 250 200-300
Tracking 0.1 0.01-0.2 100 20-400

Table 6.2: Observations about the feature detection and description.

detected within 1.5 seconds. During the markerless tracking the amount of features averages
around 500 features which requires a processing time of about 0.5 seconds.

6.1.4 Correspondence Search and Mapping

The processing time that the correspondence search requires highly depends on the amount
of points in the map. In the beginning, the correspondence search needs no more than 0.015
seconds to complete its calculations.

As the amount of points in the map rises, so does the complexity of the correspondence
search. However, the complexity rises slowly. When the map contains around 1000 points, the
correspondence search executes its calculations within 0.035 seconds. With around 3000 points,
it takes 0.07 seconds. At any given time the processing time is subject to fluctuations, but in
comparison to the overall trend these fluctuations are minor. Table 6.3 shows the development
of the processing time in relation to the amount of map points.

Amount of map points Processing time in seconds
200 0.015
800 0.03
1000 0.035
1500 0.04
2000 0.05
3000 0.07

Table 6.3: Relationship between the processing time and the amount of points in the map.

If the frame shows parts of the environment that the video captured previously, the corres-
pondence search calculates between 100 and 200 correspondences with known 3D positions
and between ten and twenty without. If a frame contains a lot of features, the amount of cor-
respondences with known 3D positions rises up to approximately 400 correspondences.

When the user moves into unknown areas, the frames contain large parts that the application
observes for the first time. First, the application hardly finds any correspondences, but creates
a lot of incomplete points. It re-observes many of these points in the following frames. The
correspondence search then finds a lot of correspondences without a 3D position. The map
triangulates these correspondences, which leads to a decreasing number of incomplete map
points. Afterwards, the application recognises large parts of the environment and the corres-
pondence search mostly returns correspondences with a known 3D position.

If the user keeps moving, the correspondence search returns a lower amount of both types of
correspondences. It cannot be reobserved many of the detected features, because the user has
already moved on.

The amount of map points with a known 3D position constantly rises. The second frame, that
the camera captures, adds several hundreds of map points. Afterwards, most frames contri-
bute between ten and twenty points. The amount of incomplete map points develops less
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consistently. Most frames change the amount only by a couple of points. From time to time
the amount sinks. When the map already contains around 1000 map points with known 3D
positions, the amount of incomplete map points lingers at approximately 100.

It is almost impossible to discern whether the correspondences are correct when the eva-
luation considers only the correspondences. As a user of the application it is only possible to
examine the corresponding image points and to conclude that most correspondences seem to
be correct. To establish a system that allows the validation of the correspondences would be
a very complex task. However, the correspondences affect other parts of the application, for
example the triangulation. If these parts return plausible results, the correspondences have to
be reliable.

6.1.5 Triangulation

The complexity of the triangulation depends on the situation. When the camera moves within
known areas, it has to process around 30 correspondences. This takes around 0.015 seconds.
Right at the beginning of the application or when moving into unknown areas, the application
triangulates a lot of correspondences. The correspondence search detects between 150 and 300
corresponding points, which are in need of a 3D position. In this case, the processing time
ranges between 0.03 and 0.04 seconds.

During the initialisation the triangulation returns reasonable results with very few outliers.
The predominant amount of calculated 3D positions mirror reality.

During the markerless tracking, the triangulation becomes less reliable. As long as the ca-
mera moves within areas explored within the initialisation the results are similar. When the
frames show unknown parts of the environment, the triangulation becomes less accurate. The
results contain more outliers, due to the inaccurate poses calculated by POSIT.

6.1.6 POSIT

POSIT usually receives between 100 and 200 correspondences. It requires approximately 0.015
seconds to complete the pose estimation. The estimated poses do not always reflect reality.
Sometimes, in a row of twenty poses that represent a slow movement in one direction, the
position of one is displaced a couple of decimetres without any movement justifying it. The
pose does not always change in a way that reflects the real movement of the camera.

Additionally, the pose estimation is not as accurate and robust as the marker tracking. If the
rotation of the camera initiates the change to markerless tracking and the user tries not to move
the camera, the estimated position of the camera may still differ around 20 centimetres in one
or several of the coordinates from the position during the marker tracking. However, the pose
estimation in the following frames can be more accurate again if it does not receive too many
of outliers. A frame in which POSIT estimated an inaccurate pose, produces outliers.

The pose estimation seems to be rather sensitive. Its inaccuracies accumulate. The further
away from the marker the camera moves, the more inaccurate the pose estimation becomes.
Whenever the frame shows parts of the scene that the application explored during the initiali-
sation, the results of the pose estimation improve.
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6.2 Analysis

6.2.1 Overall System

The markerless tracking requires less processing time than the initialisation, but its processing
time varies more. The difference in processing time becomes even larger when using a hi-
gher resolution. During both markerless tracking and initialisation, the feature detection and
description step takes up most of the processing time. This causes the difference between mar-
kerless tracking and initialisation. During the initialisation the marker is always present. The
marker represents a high-contrast structure that produces a lot of features. During the marker-
less tracking on the other hand, the content of the frames vary much more. The environment
that the application tracks will usually contain both uniform areas and areas with a high and
changing contrast. If the camera now captures a uniform or low-contrast area, the application
detects a comparatively low amount of features. If it captures an area with high contrast, the
amount of features comes closer to the average amount of features during the initialisation.

That the feature detection and description step is the most time-consuming task of the tra-
cking entails that the amount of map points hardly influences the overall processing time. The
other tasks of the application become more time-consuming the more map points exist, but
they still do not compare to the feature detection and description.

The beginning of the initialisation influences the success of the markerless tracking the most.
Within the first frames, the map grows very fast. As the part of the environment that the
initialisation can explore is limited by the marker, the initialisation contributes predominantly
known information, after a dozen of frames.

6.2.2 SURF Feature Detection and Description

The feature detection and description are very time-consuming due to the high amount of
features that the application finds. Using a frame of the size 640 × 480 even yields over 1000
features - at least during the initialisation. The only option to reduce the processing time is
to reduce the amount of detected features. Possibilities to do so include reducing the amount
of octaves used for feature detection, adapting the threshold and adapting other parameters
of the feature detection. However, it is arguable, if such a solution would work better. After
all, situations already occur in which the application hardly detects any features, even with the
higher resolution. Reducing the amount of features might lead to a tracking failure more often.

All in all, this step provides a good basis for all other tracking calculations. Even though it
is slow, attempts to optimise it would reduce its accuracy. As the application already struggles
on that score, less features might render the application useless.

6.2.3 Correspondence Search and Mapping

The correspondence search establishes a connection between the frames. The concrete time it
takes to execute the correspondence search varies according to the number of map points and
the amount of features. The number of features stays within a certain range, the number of map
points grows constantly. Therefore, the map has the biggest influence on the processing time.
The processing time rises with the amount of map points. During the many executions of the
application, the correspondence search never compared to the processing time of the feature
detection.

Within almost every frame the correspondence search detects correspondences without a
known 3D position. It detects a few when the environment is already well-known and several
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when the user explores new parts of the environment. The application then triangulates these
points. Thereby, the correspondence search reduces the amount of incomplete map points and
produces map points with known 3D positions. The amount of map points with 3D positions
constantly rises.

The amount of incomplete map points behaves differently. Every frame both adds to and
reduces them. That the amount of incomplete map points rises anyway is due to some map
points for which the application never detects a correspondence. A mechanism that removes
such map points could reduce the complexity of the correspondence search, but not signifi-
cantly. As it is now, the correspondence search compares all points in the map to all new
features. It is possible to limit the amount of points by excluding ones that are out of range.
The map presents the ideal means for such an optimisation.

6.2.4 Triangulation and POSIT

During the initialisation, the triangulation produces a reliable basis of map points. When the
markerless tracking takes over, the triangulation creates less accurate 3D positions. The deve-
lopment of the results from the triangulation and pose estimation show their interdependency.
The more inaccurate the pose is, the more inaccurate the triangulated positions become and the
more outliers they contain. The estimated pose differs from the camera’s true pose the more
inaccurate 3D positions the pose estimation utilises. The inaccuracies accumulate and intensify
each other. However, the pose estimation does not necessarily use all points triangulated in the
previous frame. That it receives correspondences with a reliable 3D position as well softens the
accumulation a little bit. In general, there exist more outlying 3D positions the further away
the camera moves from the marker.

Even if the 3D positions are reliable, POSIT delivers inaccurate results if the scene is too flat
or the depth varies too much. The triangulation on the other hand exhibits the results the user
expects as long as it does not use an outlying camera’s pose.

6.2.5 Tracking Failure

The markerless tracking fails when the application does not find the required minimum of four
correspondences. The lack of correspondences at some point or other is impossible to avoid.
Every markerless tracking application can only aspire to let that happen as seldom as possible.
An option to lower the possibility is to detect more features. However, within this thesis the
feature detection and description component already is the most time-consuming part of the
application. As the failure usually occurs after fast movements, it is unavoidable.

The application does not work in an environment that is too dark, because ARToolKit does
not recognise the marker under such conditions. It is possible to change that situation by adap-
ting the threshold for the marker detection. If an AR application targets darker environments
this is advisable. However, adapting the threshold causes problems in brighter environments.
A change of the threshold would then result in false detection of marker-like structures. Ad-
ditionally, feature detection and description and the correspondence search work best with a
high contrast. In a dark environment, the contrast could be so low that the features are not
distinctive enough and that the results become very inaccurate.

6.2.6 Comparison to Existing Solutions

Only a limited amount of markerless tracking applications for Mobile AR exist. Even less
resemble the approach that this thesis takes at all. This section examines two vision-based
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SLAM solutions. The first one was adapted to the iPhone.

6.2.6.1 Parallel Mapping and Localisation

Klein and Murray developed a SLAM solution, which they call Parallel Mapping and Locali-
sation (PTAM)[KM07], and adapted it to work on the iPhone3G[KM09].

PTAM is a very accurate and robust algorithm that works even under challenging condi-
tions. It can for example cope with rapid camera movements and poor image quality. The user
is responsible for the initialisation. PTAM uses a very high amount of features to guarantee its
accuracy. Due to this high amount of features, it is limited to a small scene. Occlusion and false
map entries cause trouble, as they do for all SLAM approaches. PTAM corrects the measure-
ments via bundle adjustment, which refines the measurements and removes falsely recognised
correspondences. The map contains the features and keyframes. These keyframes are snap-
shots, which the camera takes if a certain amount of time has passed or the scene changed too
much.

For the adaption to the iPhone, the features were limited. The system only keeps features
which can be found at different scales. It tries to determine, which features have the highest
information value. This system limits the amount of keyframes as well. As soon as it stores
a certain amount of frames, thirty-five to be precise, it discards old frames when adding new
ones.

PTAM for the iPhone uses an approach with a different focus. It builds upon an existing
solution that is quite complex. The adaption to the iPhone works only within a very limited
amount of space.

This thesis tries to encourage the user to explore the environment. The system that this thesis
developed works best when staying close to the initial position. However, unlike PTAM, the
system is not designed for a limited environment.

PTAM takes a different approach. It uses far less features than this thesis. It puts a lot of
processing time into the features it does compute, but only detects a limited amount.

6.2.6.2 SceneLib

Davison, with the help of Smith, developed a library for vision-based SLAM, which they called
SceneLib1. Unfortunately, this library takes a different approach than this thesis. It uses a
camera which can actively search for features and focus on them. Due to these capabilities,
SceneLib selects and stores barely enough features to calculate a pose.

Like many markerless tracking applications it only works within a very limited range. It is
highly optimised and targets desktop computers. Therefore, it can afford much more complex
approaches than this thesis does.

SceneLib targets completely different conditions and uses completely different technology.
SceneLib can theoretically be generalised to other systems and conditions, but the sparse do-
cumentation and the highly complicated code make this difficult. Therefore, it was discarded
for the purposes of this thesis.

6.3 Validation

The approach, that this thesis takes, works and is feasible. Individual components of the appli-
cation can easily be replaced by another approach. How accurate and fast a component works

1http://www.doc.ic.ac.uk/~ajd/Scene/index.html, visited in May 2010
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depends on the situation. The results are more accurate when the user moves within the pre-
viously explored environment. If the user moves into unknown parts, the accuracy decreases.
The more accurate the results are, the longer the computations usually take. Whenever the user
moves a lot, the frame rate rises, but the probability of tracking failure is high.

The marker tracking presents a good choice to avoid the initial tracking problem. It quickly
establishes a working basis for the markerless tracking. The map presents knowledge of the
environment that can be used for the augmentation of objects that are out of sight.

The pose estimation requires improvements. Improving the pose estimation would greatly
improve the application’s reliability and accuracy. All other components work reliable, even
though they produce an outlier every now and then. Using the potential of the map to li-
mit the amount of map points, which a correspondence search considers, would improve the
performance. Sorting the map points according to their 3D positions, for example by using a
k-d-tree, would enable more efficient access to the map points that are within a certain range.
Especially if the application runs for quite a while and covers a large space, the amount of
map points used for the correspondence search could slow the application down. Another op-
tion that would improve the performance, is to use only those keyframes, that hold the most
information.

However, what slows the application’s performance down the most, are the feature detec-
tion and description. They require improvements. As SURF presents both a fast and reliable
detection, reducing the amount of features is the only option left. An application that detects a
considerably smaller amount of features, relies on the hope that only the most distinctive and
robust features persist. If the application could produce reliable results with less features, it
would run on a mobile phone.

In order to port the application onto a mobile device, some of the mentioned optimisations
are necessary. As it is now, the application requires a lot of processing time and too many
resources to produce reasonable frame rates on a mobile device. Using the GPU of a mobile
phone for the computations could improve the situation.

An optimised and improved version of the application would probably run on a mobile
phone with a decent frame rate. As quickly as mobile devices develop, the conditions for
markerless tracking keep improving. Markerless tracking on a mobile phone is within reach.
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7.1 Summary

This thesis examined vision-based markerless tracking regarding its suitability for Mobile AR.
It established an understanding of AR, Mobile AR and tracking approaches. It determined the
different components of a markerless tracking system. For every component it then investi-
gated different approaches. It thus reproduced the level of knowledge in markerless tracking
research.

The best option to thoroughly explore the potential of markerless tracking for Mobile AR
would be to create several systems. These systems could implement different general ap-
proaches. One might focus solely on its efficiency, another on the quality of its results. A third
system could consider both efficiency and accuracy to reach a compromise of both. Another
system could try to generate accurate results while using as little data as possible. A detailed
evaluation of the different systems might gain new insights.

The limited time frame of this thesis did not allow such an approach. This thesis planned
and implemented one system. It focused on the performance of the system’s components as
this is the biggest issue in Mobile AR. It eliminated approaches that were too time-consuming.
The thesis then considered the accuracy and reliability of the remaining approaches.

The resulting system seemed to be the most promising one. However, this thesis possibly
missed some of the potential of other approaches, which it chose not to explore.

Porting the system to a mobile platform would have been a desirable, albeit time-consuming
step. It could have provided valuable input to the evaluation.

The implementation of the system was a vital part of this thesis. It pointed the strengths and
the weaknesses of the concept out. This thesis determined those components which lessen the
accuracy or the performance the most. The feature detection and description step influences the
performance the most, the pose estimation the accuracy. The system that this thesis presented
can potentially run on a mobile phone, but requires improvements and optimisations first.

Vision-based markerless tracking can work on mobile phones. However, limitations are ne-
cessary. The tracking cannot be both accurate and fast. Limiting the application area or using a
mobile phone’s other sensors to assist the tracking are feasible options.

7.2 Future Work

The system that this thesis presented offers a lot of potential for further research and develop-
ments. This section examines the potential and suggests ways to use it. It presents no fixed set
of suggestions. Instead it identifies different directions, in which the system can develop. Some
of the suggestions contradict each other, for example it is not advisable to both port the system
to a mobile platform and implement a more complicated and thus more time-consuming SLAM
approach.

The system can easily be integrated into an AR application or enhanced by other AR func-
tionality. In order to utilise the system in an AR application, the system requires a component
that searches the frames for known objects and another that realises the augmentation of the
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detected objects. The application can adjust the augmentation according to the camera’s pose
that the system estimates.

Porting the system to a mobile platform and exploring the potential of Mobile AR further is
another interesting task.

The integration of the system into an AR application and the porting to a mobile platform
both require optimisations. Different ways to optimise existing approaches occupy a large role
in markerless tracking research. This system features several possibilities for optimisation.

In order to reduce the processing time, it is necessary to analyse the time that the components
require in detail. Especially, the feature detection and description and the library they use need
to be examined. A detailed analysis calls for a profiler, even though it takes a considerable
amount of time to set one up.

Mobile AR often explores the usage of keyframes. Keyframes are those frames that hold
more information about the environment than the average frame and which therefore influence
the tracking success a lot. Many methods rely on correspondences between two frames. They
work best if the features are shown from different angles. The camera’s poses in the two frames
should be distinct. Keyframes present a possibility to ensure that. In order to choose keyframes,
applications usually consider how many frames passed since the last keyframe and how dif-
ferent the scene in a frame is compared to the previous frames. Using keyframes reduces the
computational complexity. On the other hand, skipping frames increases the likelihood of tra-
cking failure.

An improved version of the system could include mechanisms that detect outliers and re-
move them from a given set of data. Additionally, the system should erase those points from
the map, that the application hardly ever re-observes. Both these methods improve the accu-
racy of an application.

SLAM approaches show great promise for markerless tracking and AR applications. So far,
the system does not use the complete potential of the map. Using the map’s spatial information,
a system can reduce the amount of map points a correspondence search has to consider. A k-
d-tree, that organises points according to their positions, lends itself to such a task.

This thesis uses a very simple SLAM approach. It is possible to include a particle filter or
an Extended Kalman Filter with the map as a basis. Such filters improve the pose estimation’s
accuracy.

A more complex SLAM approach can consider data gathered by other sensors than the ca-
mera. Including another sensor to aid the tracking should be considered as well.

Last but not least, it is possible to replace the marker initialisation with a markerless one.
Unfortunately, markerless initialisations entail a whole new range of issues. Among others,
markerless initialisations complicate the creation of a reference frame.

As can be seen by the suggestions in this section, markerless tracking on mobile devices
offers a lot of potential that needs to be explored. The processing power of mobile devices keeps
increasing, thereby establishing more and more opportunities. The speed of this development
calls into question if it is advisable to put a lot of effort and time into optimisation of existing
solutions. To answer that question it is necessary to consider that markerless tracking takes its
time on a desktop computer as well. Achieving markerless tracking solutions that work with a
limited amount of resources would enable a whole new range of applications. When carefully
implemented, Mobile AR applications have the potential to fundamentally change people’s
perception of their everyday environment and life. Developing a fast and reliable markerless
tracking solution is worth its while.
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