

UPTEC IT07 014

Examensarbete 20 p
April 2007

OSREP
Open-Set REalistic Pinpointing

Johan Klövstedt

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

OSREP - Open-Set REalistic Pinpointing

Johan Klövstedt

Using what researchers call backseat games the kids could be occupied while traveling
in a car and not bother parents with nag like “Are we there yet”. These kinds of
games transform boring trips into exciting adventures by combining and connecting
real world and computer generated data. One of these backseat games is a research
prototype called Backseat Playground (BSP). This prototype is based on narrative
stories which evolve through interaction with the surrounding environment. By using
a customized gaming device for acquiring position of where the player is located and
direction that the player is pointing the device kids are able to interact with the
surroundings of the car. In the current BSP prototype the player can only pinpoint
objects that are defined by BSP itself while traveling through a variety of surrounding
environments. In this thesis project it is investigated if there is a possibility to make
the pinpointing more realistic. Realistic in the way that the algorithm senses if the
player has started to pinpoint an interesting object and further on it also pinpoints
that object’s location. This new generation of pinpointing is called Open-Set REalistic
Pinpointing (OSREP) since it extends a closed set of objects into the amount of
objects that the player(s) would like to put into the world of the BSP. Furthermore
this opens up for the possibility for users to create their own content at that location.
The purpose of this thesis project is to create algorithms that serves as proofs of
concept showing that it is possible to carry out the necessary calculations needed to
produce the results wanted for the BSP game prototype. Therefore there are some
extensive investigations and examinations made as to how a player would be
pinpointing objects and also how the sensing of players sight can be calculated. These
examinations were in fact test runs made by myself in the same environment that the
BSP prototype is tested. To be able to conduct such test runs a simplistic data
acquirement tool was created. The investigations carried out was done by first study
the relevant publications made in the area of mobile AR games and also study the
publications made regarding the BSP prototype. Consecutively there were some
studies made in the areas of mathematical statistics, geometry and probability to show
the theories behind the OSREP algorithm.

One objective during development of the OSREP algorithm was that they should be
easy to integrate into the BSP prototype. This was accomplished through a thoroughly
investigation of the current version of the code written for the BSP prototype.
Although some modifications regarding the handling of direction data has been made
and also regarding the conversions of positional data. A reason for this was to be able
to create the OSREP algorithms as a standalone process so that there would not be a
need for running the actual BSP game or its simulator. Another objective was to
visualize the OSREP performance in the real world. Although this has not been
completely finished there are results presented in this thesis in a more primitive way
than wished for. The reason for not completing such a visualization application is that
the time constraint put on this kind of thesis project is too narrow. But at least a
foundation has been made and could certainly be continued by another master
student.

Although some setbacks have been experienced regarding the way the OSREP
algorithms was visualized the algorithms seem to work in both in theory and on the
acquired sensor data. The primitive visualization made only serves as
proof-of-concept and could be used as an aid for making sure further efforts of
integration of the OSREP algorithms into BSP is worth the cost in effort and time.
The major result of the OSREP algorithm was that it shows a sufficiently accurate
location of the pinpointed object. A very nice feature of the algorithm is that it does
not need any external triggering to make the distinction as to when the player has
started to aim. It could rather be used continuously to examine the recorded data to
calculate the location of pinpointed objects.

Tryckt av: Ångströmlaboratoriet, Uppsala Universitet
ISSN: 1401-5749, UPTEC IT07 014
Examinator: Anders Jansson
Ämnesgranskare: Catharina Carlemalm Logothetis
Handledare: Anton Gustafsson

i

ii

Sammanfattning

Denna rapport är en del av ett examensarbete utfört hos Interactive Institute’s Mobility Studio.
Examensarbetet är en del av min utbildning till civilingenjör i Informationsteknologi vid
Uppsala Universitet.

Vi vet alla att det kan vara oerhört tråkigt att som passagerare i en bil sitta inaktiv bredvid
eller bakom föraren. Detta gäller speciellt barn. ”Är vi framme snart?” är troligtvis en av de
vanligaste fraserna en förälder kan höra från baksätet i en bil. Men hopp finns även för dessa
barn. I form av baksätesspel kan barn och ungdomar roa sig på egen hand.

Ett sådant spel är det så kallade Backseat Playground (BSP) vilket är ett mobilt
verklighetsförstärkt spel (dvs. ett dataspel med en förstärkt koppling till verkligheten). BSP-
spelprototypen är enligt en nyligen publicerad rapport av Gustafsson, Bichard, Brunnberg,
Juhlin och Combetto (2006) beskrivet som ett spel baserat på berättande historier som
utvecklas genom interaktion med miljön som omringar bilen medan man reser genom
vägnätet. Den skiftande miljön triggar händelser och ljud som kan ta spelaren till nästa steg i
spelet. Men ett sådant steg kan vanligtvis bara tas om spelaren lyckas utföra ett uppdrag.
Uppdragen består bland annat av att lokalisera ursprunget av ljud eller lokalisera objekt som
ljudet kan komma ifrån. På detta sätt kan BSP förvandla kyrkor, broar och andra objekt vid
sidan av vägen till en äventyrlig värld fylld med virtuella varelser, skatter och spännande
uppdrag.

För att kunna koppla ihop världen utanför bilen med spelaren som spelar BSP så behövs en
speciell spelkontroll. Spelkontrollen fungerar som en riktbar mikrofon med vilken barnen kan
interagera med spelobjekt. Den här riktbara mikrofonen innehåller sensorer för att kunna
bestämma dess rumsliga rörelser och riktning.

För att kunna välja ut vilka representabla objekt som BSP kan nyttja under spelets gång
används data från så kallad Geografiska Informations System (GIS). Sådan data berättar mer
om ett kartobjekt till exempel att en fyrkant på kartan är en kyrka eller sporthall. Med hjälp av
av sådan data kombinerad med en karta och en GPS så kan man bestämma spelarens position
och därmed också var objektet ligger i förhållande till spelaren. Utöver det så kan man med
spelkontrollen se om spelaren siktar på objektet. Detta bestämmer man genom att triangulera
GPS-positionerna med skärningspunkten för två vinklar som spelaren riktar kontrollen i. Enligt
figuren nedan ser man hur detta är tänkt och fungerar.

Spelkontrollen som spelaren använder i Backseat Playground.

iii

Då detta sätt att sikta gäller för en sluten mängd siktbara objekt (dvs. objekt som BSP
definierar som siktbara under spelets gång) skulle det inte fungera i en framtida version av
BSP. I en framtida version vill man nämligen kunna implementera användar-skapat-innehåll.
För att kunna göra det så måste spelaren kunna få bestämma en position i den verkliga
världen där informationen ska ligga. Alltså behövs en ny generation av siktning. Det är denna
nya generation som detta examensarbete ska resultera i eller närmare bestämt undersöks om
det skulle kunna gå att implementera en algoritm som kan utföra sådan sikting i BSP
prototypen. Denna nya generation av siktning kallas OSREP som är en akronym för Open-Set
Realistic Pinpointing.

Genom att undersöka hur en spelare siktar; det vill säga hur riktningsdatan ser ut under en
sådan siktning liksom när man ska triangulera data, så resulterar det i OSREP algoritmerna.
Genom att detektera mönster i riktningsdata så kan den applikation där OSREP är integrerad
känna av när spelaren siktar på något. Därefter kan man rent logiskt se när spelaren slutar
sikta och följdaktligen triangulerar man positionerna och riktinngarna för tiden emellan start
och slut. Positionen som detta resulterar i blir då positionen som spelaren kan lägga ut
information på i den framtida versionen av BSP.

Detta kanske låter väldigt lätt implementerbart men faktum är att en hel del ingående studier
har skett över publikationer rörande BSP, mobila spel, matematik, statistik och sannolikhet.
Dock har mest arbete lagts ned i att analysera den programmerade koden som redan
utvecklats för BSP. Syftet med denna analysering är att snabbare kunna utveckla ett verktyg
som kan visualisera OSREP med en bakomliggande karta på vilken bilen syns tillsammans med
de riktningar och positioner som registrerats under testkörningar. Det arbetet har jag inte
hunnit klart med. Därför förenklades visualiseringen till den milda graden att man ser hur de
matematiska resultaten ser ut i form av grafer. Ett annat syfte med att analysera BSP-koden
är att eftersom OSREP ska kunna integreras i BSP så måste den ju hantera data som även är
tillgänglig när BSP spelet körs.

För att tillgodogöra mig datan som OSREP utvecklats utifrån har testkörningar gjorts med ett
egenhändigt producerat inspelningsverktyg som körs på BSP-spelkontrollen.

De producerade resultaten är i algoritmens aktuella version tillfredställande eftersom
algoritmen producerar en position för det siktade objektet. Dessutom sköter algoritmen
behandlingen av insamlad data kontinuerligt vilket medför att spelaren inte behöver trycka på
någon knapp för att signalera att han eller hon börjat sikta in sig på ett objekt.

Triangulering med två GPS-positioner och med två riktningar spelaren siktar i.

1

Väg

GPS position 1

GPS position 2

2

3

Objekt

P

riktning 1
riktning 2

riktning 1

P

Sida 1

Sida 2

Sida 3

(180° - (riktning 2))

GPS position 1

GPS position 2
Väg

iv

Preface

This report serves as my master thesis project report, the master thesis project being a part of
my education at the Department of Information Technology at Uppsala University. This report
is a result of the work that I have done at the Interactive Institute’s Mobility studio. The work
done will hopefully contribute to some extent in the area of game controls in mobile
augmented-reality games. Also it will hopefully help the team at the Mobility studio to progress
with their Backseat Playground game prototype, and that these algorithms could help improve
the game so it may take the game to its next conceptual level. I.e. future development of User
Content Creation tools using the algorithms I have made. Not saying this is a report solely
about User Content Creation, it is rather an examination of the possibilities of using the
currently used gaming device.

The report is intended for people with a strong technical interest since there are a greatly
technically and programmatically language used. But of course my intension for this report is
to explain every definition and solution in the way it would be easily understood.

I would like to acknowledge the influence of my co-workers at Interactive Institute Mobility
studio that has helped me in various ways. The presentations and meetings together with
them have given me a good insight into the research industry. A special thanks to Anton
Gustafsson, Liselott Brunnberg and Oskar Juhlin that provided me with good feedback and
constructive criticism about the report and design issues. Also I would like to thank John
Bichard for abstract but useful thoughts and discussions during this thesis project. Another
thing that has given me much joy to have been a part of; are the lectures and discussions with
some of the guest researchers at Interactive Institute, such as Barry Brown and Louise
Barkhuus who has influenced me in various ways.

Johan Klövstedt
Uppsala, April 2007

v

vi

Table of Contents

Abstract i
Sammanfattning ii
Preface iv
Table of Contents vi
Tables and Figures viii

1. INTRODUCTION 1

1.1 Background 1
1.2 Problem description 2
1.3 Purpose 4
1.4 Delimitations 4

1.5 Related Work 5

2. METHODOLOGY 7
2.1 Customizing a Model 7

3. HARDWARE 9

3.1 Backseat Playground Hardware 9
3.1.1 GPS 10
3.1.2 Accelerometers, Gyros and Magnetometers 12

3.2 OSREP Hardware 14

4. THE OSREP THEORIES 15
4.1 Definitions 15

4.1.1 Investigating valid road segment types 15
4.1.2 How does a player pinpoint an object 17

4.2 First algorithm of OSREP 19
4.3 Second algorithm of OSREP 20

4.3.1 Line Equations and Line Intersections 21
4.3.2 Weighing POIs to Achieve POI Convergence 23
4.3.3 Initial Angle – The Offset 23

5. THE OSREP IMPLEMENTATIONS 25
5.1 The tpPPC Application 25

5.1.1 Part 1 of the model – A tool preparation part 25
5.1.2 Conceptual Design of the tpPPC Application 26

5.2 Conducting Test Runs 28
5.3 Visualization Applications 29

5.3.1 Part 2 of the model – Analyzing and Visualizing 29
5.3.2 Conceptual Design of the GISObjectApp 31
5.3.3 Python Script Hacks 32

vii

5.4 Implementing OSREP Algorithms 32

6. RESULTS 35
6.1 Results for the tpPPC application 35

6.2 Results from the Test Runs 36
6.3 The GISObjectApp visualization application 37
6.4 OSREP Results 39

6.4.1 Results of the First OSREP Algorithm 39
6.4.2 Results of the Second OSREP Algorithm 40

7. DISCUSSING AND CONCLUDING THE RESULTS 45
7.1 The Applications 45

7.1.1 The tpPPC 45
7.1.2 The GISObjectApp 45
7.1.3 The Python Hack 45

7.2 Are the OSREP Algorithms Sufficiently Good? 46
7.3 Lessons learned 46
7.4 Future Work 47

8. ACKNOWLEDGEMENTS 49

9. REFERENCES 51
9.1 Internet 51

9.2 Literature 52
9.3 Publications 52

10. APPENDICES 55
10.1 Appendix A – Calculating a sector of a circle 55

10.2 Appendix B – Maximum valid AngRates 56
10.3 Appendix C – GPS Coordinate Transformation 58
10.4 Appendix D – The OSREP Testing Feedback 59
10.5 Appendix E – The Test Run Notes 61
10.6 Appendix F – Code for the second OSREP Algorithm 62

viii

Tables and Figures

Table 3.1.1.2: This table shows the sources of error for the GPS positions. 10
Table 4.1.1.2: Distance traveled at a certain speed during one second. 16
Table 4.1.1.3: Angles extracted from the calculation in Appendix B scenarios. 16
Table 10.5.1: Notes taken during 15 test runs at Lidingö. 61

Sammanfattningsfigur: Spelkontrollen som spelaren använder i Backseat Playground. iii
Sammanfattningsfigur: Triangulering. iv
Figure 1.1.1: The gaming device. 1
Figure 1.1.2; Left: Triangulation. Right: Imagined triangle. 2
Figure 2.1.1: Structural model of execution of the master thesis project. 8
Figure 3.1.1: Hardware needed for the Backseat Playground game. 9
Figure 3.1.1.1: Acquiring a GPS position. 10
Figure 3.1.1.3: Scenario with GPS position errors. 11
Figure 3.1.2.1: Shows the Microstrain sensor module’s coordinate system. 12
Figure 3.1.2.2: Shows the gimbals and how the sensor platform is placed in a gyro. 13
Figure 3.1.2.3: In this scenario it seems like the player is tracking object 2. 13
Figure 3.1.2.4: In this scenario the concept of the Microstrain sensor errors is shown. 14
Figure 4.1.1.1: Road scenarios. 15
Figure 4.1.1.4: Approximate road segment given the calculations made. 17
Figure 4.1.2.1: Showing how pinpointing should be done from the player‘s perspective. 18
Figure 4.2.1: Result of how the variance looks like for the first OSREP algorithm. 20
Figure 4.3.1.1: Line equations and line intersection. 21
Figure 4.3.1.9: The pseudo-code for finding where two lines intersect. 23
Figure 5.1.1.1: First part of the model. 25
Figure 5.1.2.1: The conceptual design of the tpPPC application. 26
Figure 5.2.1: Example of test run showing player path and the pinpointed object. 28
Figure 5.2.2: Distance B between road and object. 29
Figure 5.3.1.1: Second part of the model. 29
Figure 5.3.2.1: The conceptual design of GISObjectApp. 31
Figure 5.3.3.1: Third part of the model. 32
Figure 6.1.1: The tpPPC tool on a PDA. 35
Figure 6.2.1: The acquired button states. 36
Figure 6.2.2: The acquired GPS positions. 36
Figure 6.2.3: The acquired gyro data (with two A4-pages of data cut out). 37
Figure 6.3.1: A visual of the GISObjectApp. 38
Figure 6.4.1.1: Result of how the variance looks like for the first OSREP algorithm. 39
Figure 6.4.1.2: This graph shows that the angle is in fact increasing 40
Figure 6.4.2.1: Example of how the result looks like for the second OSREP algorithm. 41
Figure 6.4.2.2: Close-up of the pinpointed object and its radius. 41
Figure 6.4.2.3: OSREP with a finite button state interval and offset angle = 30 degrees. 42
Figure 6.4.2.4: OSREP without a finite button state interval. 43
Figure 10.1.2: The variables used showed in a circle. 55
Figure 10.2.1: Explanatory image of the variables used when calculating
 maximum AngRate. 56
Figure 10.2.4: Resulting graphs showing the maximum AngRate at five different speeds. 57
Figure 10.3.1: Python code for transforming GPS positions in
 WGS84 format to RT90 format. 58
Figure 10.4.1: Code feedback: With Button State Interval 59
Figure 10.4.2: Code feedback: With Button State Interval 60
Figure 10.6.1: The python code for the second OSREP algorithm 62

Master Thesis Report - Introduction

1

1. Introduction

In this chapter you find the background for this thesis project and consecutively the
description of the problem/assignment along with the delimitations and the related work that
has been done in the area of mobile augmented-reality games and in the area of motion
sensitive gaming controls/devices.

1.1 Background
To travel by car can be very tedious, especially for kids that are inactive passengers. “Are we
there yet?” is for certain one of the most common phrases that parents could hear from the
backseat of a car. The phrase in itself is just another way for kids to express their boredom.
Looking at the problem from the children’s point of view there is some hope to be found
through development of so called backseat games. One prototype for such a game is called
Backseat Playground (BSP) which is a mobile augmented-reality (AR) game (also called
pervasive game). I.e. a game using a combination of real world and computer generated
data. This game is intended to be played by kids in the backseat of a car. The BSP game
prototype is in a recently published article by Gustafsson, Bichard, Brunnberg, Juhlin and
Combetto (2006) described as a game based on narrative stories which evolves through
interaction with the surrounding environment while traveling through the road network. The
changing scenery in the surrounding environment will trigger events and sounds that take the
player to the next step in the story, but only if the player succeeds in performing the required
actions for them. Such a required action could be to pinpoint the origin of a sound or locating
an object that corresponds to the sound played in the headphones that the player is wearing.
In this way the game turns churches, bridges and other roadside objects into an adventurous
world filled with virtual creatures, treasures and exciting missions.

To make the connection between the players playing the game and the world on the outside
of the car, a customized gaming device has to be used (shown in figure 1.1.1). This gaming
device1 works like a directional microphone with which the kids are able to interact with the

1 Further described in chapter 3 that explains the hardware used in this master thesis project.

Figure 1.1.1: The gaming device that is used when playing Backseat Playground. The
Pocket PC (PDA) is attached to the device itself.

Master Thesis Report - Introduction

2

game objects2. This directional microphone contains sensors to determine its spatial position
and direction. For now it is sufficient to say that the device is equipped with two sensors, a
GPS for acquiring the physical location of the player and a gyro that senses how the gaming
device is spatially pointed. To put the usability of this kind of gaming device in a context, I’m
considering what Brunnberg and Juhlin (2003) pointed out in their article “Motion and
Spatiality in a Gaming Situation – Enhancing Mobile Computer Games with the Highway
Experience”. A part of their investigation was the importance of choosing recognizable objects
and what makes a significant object for enhancing game experience. The knowledge gathered
through that investigation has been assimilated in the BSP prototype making a strong
connection between the narrative story and the chosen objects that embodies important
triggers and events. BSP uses a Geographical Information System3 (GIS) to make it possible
to distinguish certain kinds of objects. GIS is a system that categorizes map objects; the
categorization is of the kind that it tells that a square on a map is a house or a church, etc. In
combination with maps it is possible to use GPS for determining the position of the player,
but together with the input from a sensor module4 (in figure 1.1.2 referred to as directions) it
is also possible to furthermore determine where the player is located with respect to game
object location. Triangulating the positions from the GPS with the directions acquired from
the Microstrain sensor module is graphically explained in figure 1.2. Side 1 in an imagined
triangle is between GPS position 1 and GPS position 2 while side 2 and side 3 are between
point P and the GPS position 1 and point P and GPS position 2. In the figure it is shown that
the player is aiming towards object 2, or more precisely has pinpointed the location P.

1.2 Problem description
By using the information from the previous chapter there are a two significant facts that are
implied.

2 To design for physical interaction has earlier been investigated by Brunnberg and
Hulterström (2003) in their article “Designing for physical interaction and contingent
encounters in a mobile gaming situation”.
3 Geographical Information System is a system to provide for more information about map
objects. More information could be found at: http://www.gis.com/whatisgis/index.html.
4 The sensor module with its accelerometers, gyros and magnetometers is thoroughly
explained in chapter 3.1.

Figure 1.1.2; Left: Triangulation using two GPS positions and the angles acquired from the
gyro. Right: The resulting imagined triangle.

1

Road

GPS position 1

GPS position 2

2

3

Objects

P

direction 1
direction 2

direction 1

P

Side 1

Side 2

Side 3

(180° - (direction 2))

GPS position 1

GPS position 2
Road

Master Thesis Report - Introduction

3

1. Firstly, since there has to be at least two GPS positions the player has to be moving
(i.e. if the player is not moving there will not be a side in the triangle between GPS
position 1 and GPS position 2). This has to be greatly emphasized since it is of great
importance for triangulation purposes.

2. The second fact is a bit more complex to explain. To do so one need to understand

how BSP has been using the term “pinpointing” objects up to current date. The BSP
game is using a quite rudimentary and non-realistic kind of pinpointing. This kind of
pinpointing is first of all triggered by an already set object in the surrounding
environment and then the user is pinpointing the object through the use of a 3D
sound. In this way the pinpointing becomes more of an interactive approach to
pinpoint an already set object, making it restricted through a close link to
geographically set objects. The reason for this is that the player is aiming with the
help of a sound mapped by the game to the specific location that the player should
pinpoint. (E.g. the intensity of that sound is decreased the further away from the
object the player is aiming and concurrently the sound increases in intensity when the
player is aiming closer towards it.) This old kind of pinpointing is further on called
Closed-Set Pinpointing (CSP) because of its limited range of available objects to
pinpoint.

What this master thesis does instead, is to examine whether there is a possibility that a more
realistic kind of pinpointing could be done. More realistic in the sense that the player
experiences the physically direction he or she points the gaming device in as the direction
perceived by the game as a location where something useful or interesting is taking place.
Using CSP the game would ignore that the player is pinpointing a specific location where
there has not been an object placed by the game.

Constructing a new generation of pinpointing would in contrast to CSP result in an increased
gaming experience since the player feels like he or she is in control of the game and not the
opposite. This kind of thought is applicable for a future possibility to develop BSP for User
Content Creation (i.e. when users apply their own content in a game). Because of this
increased experience the player would feel the game to be more realistic. Also the new
generation widens the set of objects that could be pinpointed. Thereby the player could aim
for objects that are not actually a part of GIS- or map information collected for the BSP
prototype, the objects are rather based on the players own interest of the roadside and
therefore the set of objects increases. Another major advantage of this approach is that the
game could be further developed in an area that allows the user to create his or her own
content (i.e. User Content Creation, UCC). Because the new kind of pinpointing allows for
new objects to be generated in a realistic kind of way it is called Open-Set REalistic
Pinpointing (OSREP).

Moreover development of OSREP is divided into two separate parts. The first part is to
actually examine an algorithm that could sense that the player had started to aim towards a
location by his or her own choice. The algorithm that should sense this was constructed in
this thesis and serves as a proof of concept. If there are not any satisfying results achieved
trough mathematical computations the final approach is to consider whether the realism
could be satisfactory using another input. This kind of input could be the use of a button to
signal that the player has started to aim towards an object or an interesting location.

The second part follows consecutively by doing some triangulation; with the help of the GPS
positions and the gyro angles, during the time span that the player is aiming5. The result of
the second part is then a triangulated location in the real world. That location could be used

5 This is in a way real-time, but some constraints are put into this thesis and will be further
explained in the theory chapter under the heading “Real-time”. (I.e. the goal is to make the
algorithm’s performance as good as it would seem like it is in real-time.)

Master Thesis Report - Introduction

4

to compare if the location of an object in the BSP game database is present or if that is not
the case the player could place user created content at that specific location. The theories for
these two parts are presented in chapter 4 while the methodology for how it all was done is
presented in chapter 3.

In the second part it would be sufficient to develop an algorithm to do the triangulation in
real-time and leave out the comparisons with BSP object database. The major reason for this
is to be able to build a stand-alone module that serves as a proof of concept, which allows for
future development and integration by the team that develops the BSP game engine. My
motivation for making this assumption is that the area of UCC is an ongoing study in the BSP
prototype.

1.3 Purpose
The purpose of this master thesis project is to examine if a new generation of a pinpointing
algorithm could be made for a mobile AR game, such as the BSP game prototype. This entails
constructing a new generation of a pinpointing algorithm, called OSREP, which is more
realistic in its use and allows for future development and integration of User Content Creation
tools. The algorithms for this is to be constructed as proofs of concept showing that it is
possible to carry out the necessary calculations needed to produce the results wanted for the
BSP game prototype. To make the definition of “possible to carry out” is not as much the
mathematical approach as to actually doing the mathematical calculation within the time
requirements. The requirements of performance in time will be retrieved during test runs
made. They will show the maximal time that the algorithm could take to perform its
designated assignment.

The examination will be carried out by first study the relevant publications made in the area
of mobile AR games and also study the publications made regarding the BSP prototype.
Consecutively there has to be some studies in the areas of mathematical statistics, geometry
and probability to show a significantly good theory for the approach of to the solution.

Another goal of this master thesis is also to visualize OSREP when it has processed acquired
data from real world test runs. The visualization shows that OSREP is applicable on data
identical to data that the BSP game uses. To acquire data test runs are carried out on
Lidingö, a small island north east of Stockholm. This island has been chosen because the BSP
test runs have been done there previously, therefore the data from my test runs are
applicable to the BSP prototype. Another reason is that GIS data is available for that area.

1.4 Delimitations
• One of the things that will not be a part of this master thesis is the mentioned future

development of the Backseat Playground game. That is to not further develop any User
Content Creation tools.

• Full integration of the algorithms with the BSP game is not a part of the thesis project.

The algorithms serve as proofs of concepts and are presented as modules that are
applicable to BSP (with some slight modifications). This implies that the errors that could
be experienced in the GPS positions will not be a part of this thesis, although they will be
explained so that the reader is fully aware of their existence. The reason for this is that
the corrections for the errors should be made on the server side of the BSP prototype, as
further explained in section 3.1.1. Also, the integration or more specifically the calculated
(triangulated) locations with the OSREP algorithms will not implement any comparisons
with the generated BSP game objects.

Master Thesis Report - Introduction

5

• Time will be a major factor for being able to do much of integration, testing and further
development between the algorithm and the rest of the game. The only thing to do is to
try to reach the goals set and from there on do as much as possible.

1.5 Related Work
Since the basis of this master thesis is related to GIS objects and the area of mobile
augmented-reality games there is not much related work to be found that combines those
two areas with aiming and pinpointing GIS objects in mobile augmented-reality games. As
pointed out in Gustafsson et al. (2006) there has been some work done in the areas of
location-based games and location-based storytelling. But the major difference with a
research prototype like Treasure, presented in an artic le by Barkhuus, Chalmers, Tennent,
Hall, Marek Bell, Sherwood and Brown (2005), which is played by two teams running around
in a physical environment while chasing coins in the vicinity of WiFi access points, and
Backseat Playground is the extensive significance of physical movement. In BSP the player
needs to move himself in the real world to make progression in the story of the game while
the content in a Treasure stays much the same during gameplay. The major consequence of
being an offspring of BSP is that it affects this thesis by being in the cutting edge of game
researching. This fact affects this master thesis both negatively and positively, negatively in
the way that there is not much information to gather in this area beside the publications
made by the developers of the BSP game prototype. It has a positively affect on this thesis
because it makes me, the author, more motivated since I can participate with valuable
results taking the BSP prototype to the next level.

The closest I consider any game control of any game consol to be, is that of the Nintendo Wii
Remote and Nunchuk6. The Wii Remote and the Nunchuk are both motion sensitive but are
originally only used indoors and most definitely not used together with a pervasive
storytelling game like BSP as described in an article about pervasive storytelling in vast
location based games by Bichard, Brunnberg, Combetto, Gustafsson and Juhlin (2006) which
also further describes the further uses of GIS to make further connections to the real world.
Also, there is the obvious fact that the BSP gaming device is used together with spatial
movement of a car which is the factor that makes it possible to triangulate positions in the
surrounding environment.

In parallel to this thesis project there is research in progress regarding change of platform for
the BSP game. Instead of a complex gaming device the intent is to use an ordinary mobile
phone with image recognition to determine direction. This will of course only be possible in
full extent in a couple of years when all phones contain a GPS receiver to be able to
determine the position of the player. Thereof this master thesis will be of even greater
interest in the future.

6 An overview of the Nintendo Wii: http://www.nintendo.com/overviewwii, offers a short
description of their motion sensitive game controllers.

Master Thesis Report - Introduction

6

Master Thesis Report - Methodology

7

2. Methodology

The methodology chapter tells you what approach has been made regarding how to examine
if a new generation of pinpointing could be done. As mentioned in chapter 1.2 Problem
Description, the major approach to this investigative project is to divide the assignment into
two parts. To make the course of action understandable I have created a model that clearly
describes in which order things are done and why I have chosen to execute them in this way.
This customized model states three different parts that will be done to clearly visualize the
sequence of work and the results which allows for a discussion and some conclusions to be
made about them. More detailed descriptions of each part of the model are found in the
implementation chapter.

2.1 Customizing a Model
Since this thesis project evaluates the possibility to extend an already existing module, or as
mentioned derive a new generation of pinpointing (i.e. namely the OSREP) this project needs
to have a quite customized methodology. But there are some basic steps to take before
embarking on the model description. These basic steps are the following two: to gather
knowledge about the BSP prototype and consider what requirements have to be met for the
results of this thesis project to be usable in the future. After this has been done the model (in
figure 2.1.1) is considered to be the model for the sequence of work. This model has been
created to get an overview of what is done in this project and it constitutes the methodology.
First of all it is a model dividing the project into three parts and taking the parts one at the
time we get:

1. The first part is to create a simplistic tool for making the initial acquirement of
empirical data. This tool preparation part is to be done in a systematic way to make it
easy to collect the necessary data mainly from the GPS- and gyro modules
respectively.

2. From the empirical data mathematical theories are deductively (i.e. the logical method

used7) derived. In this way a sufficiently good algorithm can be presented. A
sufficiently good algorithm is an algorithm that is able to show performance
differences in realism between running the BSP game with the derived algorithm and
running the BSP game without the algorithm. The OSREP algorithms are developed as
modularized8 applications that are able to process the collected set of empirical data
(i.e. the data from part 1 of the model). The output data from runs on the empirical
data from part 1 processed through the algorithm should then be able to show how
plausible it is that the algorithm serves the purpose of OSREP regarding realism.

7 A logical deduction method is when you look at e.g. a set of data and make hypotheses
based on some common distinguishable trademark for all the values of that set. Concurrently
you say that the values appear this way because of this trademark, you have then deductive
hypothesis as to the importance of that trademark.
8 Modularized applications are highly desirable, as Ghezzi, Jazayeri and Mandrioli (1991)
points out in their book Fundamentals of Software Engineering.

Master Thesis Report - Methodology

8

3. The third part will be to show through a sufficiently good visualization of the algorithm
that it holds or not holds for the theories presented. A sufficiently good visualization is
to be able to see the performance of the algorithm as to whether it shows that the
player is aiming or not and also show a calculated location through triangulation. If
not there are analysis made to why the algorithm derived is not sufficiently good and
what could have been done instead.

The final visualization of the verification and validation part was simplified due to time
constraints put on this master thesis. It will certainly suffice to show convergent results
(using simple graphs of the result) without a fancy interface with GIS objects and maps. This
argument holds if the theories behind the algorithm in a conclusive way show that the results
could be applied to a majority of test runs. To do so in a simplistic and minimalist way is
called modularization and is further explained by Ghezzi et al. in the “Modularization
techniques” chapter in the book “Fundamentals of Software Engineering”, where it is
furthermore explained that the information (i.e. in this case the handling of extracted data
and the theories derived from it) should be offered in a minimalist way to avoid unnecessary
complexity of the design. Although since the handling of the data is hidden in the
implementation of the design and therefore it is not completely avoided. It is hidden in the
code developed for this thesis but have been well-documented for others to be able to
continue the work with OSREP or to develop future generations of pinpointing applications.

Figure 2.1.1: Structural model of execution of the master thesis project. Progression is
made by moving from left to right for each part and downwards when a part is finished.

Part 3 Validation/Verification

Algorithm

visualization

Algorithm
development

Part 2

Deriving

theories from
data

Analyze data through
visualization

Gather
Empirical Data

Part 1 Empirical data gathering tool

Prepare data by

scripting

Results

Master Thesis Report – Hardware

9

3. Hardware

This chapter describes the hardware needed to play BSP. Why I describe the hardware of BSP
is because of the fact that OSREP needs some parts of it to be able to acquire necessary
data. The necessary data is the GPS positions and the gyro angles for direction when doing
the triangulation.

3.1 Backseat Playground Hardware
To be able to play the Backseat Playground game in its current prototype version the user
needs to have some hardware. This hardware (shown in figure 3.1.1) includes a server
running on a laptop, a client (the gaming device), a Bluetooth GPS receiver, a wireless access
point and a 12V-220V power converter.

The gaming device contains a directional microphone, the Pocket PC (also called PDA) and
the headphones, while the rest of the devices could be installed at suitable locations in the
car. The directional microphone is equipped with a Microstrain 3DM GX1 sensor module 9
which includes accelerometers, gyros and magnetometers to be able to sense orientation and
motion in three dimensions. The data from this gyro sensor module is transmitted from the
directional microphone to the Pocket PC through a cable connection. The Pocket PC uses
wireless LAN to communicate with the server and the Bluetooth GPS receiver (EMTAC
Bluetooth GPS) could be connected to either the Pocket PC or the laptop. The GPS signal is
relayed over the wireless LAN in either case. The Pocket PC provides both the visual interface
through its display and the audio interface through the connected headphones.

9 This sensor module is further technically described in chapter 3.1.2 and in the documents at
Microstrains web-site: http://www.microstrain.com/3dm-gx1_docs.aspx

Figure 3.1.1: Hardware needed for the Backseat Playground game. The gyro module is
seen in the top right image and the GPS receiver is seen in the lower right image.

Master Thesis Report – Hardware

10

3.1.1 GPS
This sub-chapter describes the GPS but not as much as it tells the reader more about the
errors that are present when dealing with GPS positioning. The obvious motivation for this is
to make the reader aware of the error factors that affect calculations and to show which
factor that has the greatest impact.

The GPS works similar to the triangulation that was mentioned earlier. This is done by the
GPS module itself and produces a converted result in the form of latitude and longitude. In
this case of triangulation, called dilateration (in case of two satellites, trilateration if three
satellites are used), the calculation is done between the GPS module that the player is
carrying with him and two satellites. In reality several satellites are used to produce more
accurate result and to determine the elevation of the GPS module, which is the height over
the sea level. But in a simple example using two satellites; the time it takes for each signal
from respective satellite constitutes the distance to a Point-Of-Intersection (POI) for which
we know ought to be on the surface of the earth. From that POI the latitude and longitude of
the GPS module is extracted. This is shown in a very simplistic way in figure 3.1.1.1 which
has been retrieved from the kowoma web-site10, in which point A is the valid POI. The
shadowed area is considered to be the area of valid POIs since point B is far out in space.

As seen in table 3.1.1.2 the largest contributor to positioning errors are the ionospheric
effects. This information have been gathered from two independent web-sites11 thereof the
intervals in the parenthesizes. But regarding the ionospheric errors an assumption is made
that could be argued to be very logic.

Ionospheric effects ± 5.0 meter

Shifts in satellite orbits ± 2.5 meter

Satellite clock errors ± (1.5 - 2.0) meter

Multipath effect ± (0.6 – 1.0) meter

Tropospheric effects ± 0.5 meter

Receiver errors
(calculation and rounding errors)

± (0.3 – 1.0) meter

10 The figure has been retrieved from http://www.kowoma.de/en/gps/positioning.htm.
11 The web-sites are: http://www.hacking-gps.com/articles.php?url=2&id=200503281930
and http://www.kowoma.de/en/gps/errors.

Figure 3.1.1.1: Acquiring a GPS position.

Table 3.1.1.2: This table shows the sources of error for the GPS positions.

Master Thesis Report – Hardware

11

Since the ionospheric errors depends on the weather it is most logical to say that this kind of
error would not affect single GPS positions it would rather affect the whole set of GPS
positions received at the same time of day (or when the weather is the same) making the
complete position set usable anyway. This is valid because distances and speeds received
from the GPS module are all equally affected by the same error cause, making the GPS
positions in figure 1.1.2 not differ because they are received with only one second apart. I.e.
GPS positions received in one of my test runs are not affected by the ionospheric (or shifts in
satellite orbits and satellite clock errors for that matter) since those effects changes to slow.
Moreover satellite clock errors are by listening to Samuel J. Wormley, who administrates a
quite extensive web-site12 about GPS errors, also slow in consideration of how long my own
test runs have been performed (maximal length of one test run was 40 seconds). He speaks
of an average error of 1-2 meters for 12 hour updates. Considering these time spans I argue
for a non-significant change between GPS positions in my test runs.

As I already mentioned in the delimitation chapter, I do not correct these kinds of errors nor
do I implement a solution for this kind of problems. It could be argued as making a non-
sufficient algorithm for the triangulation purpose.

To try to make up for that I hereby explain how the solution were the correction would take
place on the server-side of the BSP prototype could work like. This solution imply that the
corrections would compare known GIS objects on a map to make the shift of the GPS
positions (the shift to make being ? d; as shown in figure 3.1.1.3). That the correction would
need GIS objects explain why it should be done on the server-side of the BSP prototype (i.e.
the GIS software module in BSP is located in the server-side). The shift being applied to
every received GPS position; in reality, does not make a difference for any distance
calculations between any two GPS position since it is a simple translation of the origin for a
local coordinate system in a global coordinate system.

This is simply shown by using a translation matrix13;

1 0

0 1
0 0 1 1 1

latitude latitude

longitude longitude

latitude latitude

longitude longitude

∆ + ∆     
     ∆ = + ∆     
          

 (Formula 3.1.1.4)

where

12 The accuracy section of the web-site of Samuel J. Wormley could be found here:
http://edu-observatory.org/gps/gps_accuracy.html.
13 The formula for this has been found on p. 159 in “Modern Geometry” by David A. Thomas.

Road

True GPS
position 1

True GPS
position 2

False GPS position 1

False GPS position 2

? d

? d

Figure 3.1.1.3: Scenario with GPS position errors.

Master Thesis Report – Hardware

12

1 0

0 1
0 0 1

latitude

longitude d

∆ 
 ∆ = ∆ 
  

 (Formula 3.1.1.5)

is as explained a constant matrix of the distance difference (caused by the errors for a
sufficiently discretisized time span) used for every GPS position in the finite set that is to be
translated.

3.1.2 Accelerometers, Gyros and Magnetometers
The accelerometer, gyros and magnetometers described in this sub-chapter are all contained
in the Microstrain 3DM GX1 sensor module. Although this sensor module contains three kinds
of sensors they are all referred to as the gyro sensor. The reason for this becomes evident
when reading through this section.

The accelerometer in the Microstrain sensor module is a triaxial DC accelerometer that tracks
static orientation. This means that it senses the accelerations in 3D and the values of the
acceleration is presented as the magnitude of the acceleration along the x-, y- and z-axis
(i.e. how fast the gaming device is moved along either axis). These three axes are shown in
figure 3.1.2.1.

The magnetometers in the Microstrain sensor module are triaxial and give the absolute
direction of the magnetic field in relation to the gaming device. These magnetometers offer
great precision and by using its values the direction of the gaming device with regard to the
earth’s magnetic field is acquired. Calculation applied to values from two separate times from
this sensor shows towards which direction the gaming device is moved. Further calculation
could with this type of sensor give how the gaming device has been rotated.

The final sensor is the gyro (also called gyroscope), which determines how the device is
rotated around each axis; namely the rotations roll, pitch and yaw. The explanation for how
this is done is rather complex therefore the conceptual thought of how it works is
presented14. The gyro as it is in the Microstrain sensor module is considered to be three gyros
mounted with their axes at right angles to one another on a platform, that platform is placed
inside a set of gimbals, that platform will remain rigid as the gimbals rotate in anyway they

14 A conceptual figure is shown in figure 3.1.2.2 and the explanation of how the gyro works
has been found at: http://www.howstuffworks.com/gyroscope.htm and
http://www.gyroscopes.org/how.asp. Although these two web-sites are considered to be
somewhat popular scientific, combined they give a conceptual idea of the most significant
traits of a gyro in an inertial navigation system (INS). Since these three web-sites show
much the same thing it is considered to be a universal description of how a gyroscope works
in an INS.

Figure 3.1.2.1: Shows the Microstrain sensor module’s coordinate system.

Master Thesis Report – Hardware

13

please. Then with sensors on the gimbals’ axles it is detected when the platform rotates.
These sensors then produce signals that the INS uses to understand the gaming device’s
rotations relative to the platform. The sensors have of course been placed on the platform
and consist of the earlier mentioned accelerometer. The exact heading and the motion in all
three directions and consecutively the rate of angle around either axis could then be
retrieved.

Of course there are sources of error in the Microstrain sensor module as well. The theoretical
approach to how these would be corrected is briefly mentioned in the end of this section. The
issues with pinpointing objects arise because the Microstrain sensor module that records the
angular movements of the gaming device will contain errors in the recorded sensor data. In
the most general case without considering any errors it could look like figure 3.1.2.3 (which
is similar to figure 1.1.2) where the player is trying to pinpoint object 2. The figure shows
where the car is positioned and how the player is aiming. Since the gyro records the angles
and the GPS records the positions, the intersection point P that the player is aiming for can
be calculated, earlier mentioned as triangulating.

But in the case with direction errors in the recorded angles the scenario looks rather like in
figure 3.1.2.4 and requires a much more complex solution. The greatest difficulty is to
determine where the intersection point P really is located and at the same time determine if
the player is actually pinpointing anything (e.g. the player could just be waving the gaming
device). As we see in figure 3.1.2.4 it looks like the player is tracking object 1 instead of 2
because of the angle errors ? in the gyro. The gyroscopically errors occurs because of
temperature changes, vibrations and noise in the signal amplifiers in the Microstrain module.
This causes the gyro to drift and to compensate the magnetometers calibrates the gyro
according to its own state (e.g. the magnetometers tries to calibrate the gyro with respect to

1

Road

GPS
position 1

GPS
position 2

2

3

Objects

P

Figure 3.1.2.2: Shows the gimbals and how the sensor platform is placed in a gyro.

Gimbal

Gimbal

Sensor platform

Figure 3.1.2.3: In this scenario it seems like the player is tracking object 2.

Master Thesis Report – Hardware

14

its own registered direction). But since the magnetometers are affected by the magnetic
fields of the car this calibration could be erroneous. As seen in the figure 3.1.2.4 there are
two arrows for each GPS position. The dashed arrows marked show the angular error caused
by the drift. In a sufficiently discretisized time space the error angle ? will be the same for
both positions which simplifies the error model needed to solve the problem.

3.2 OSREP Hardware
The OSREP hardware has of course been greatly influenced by BSP since OSREP is an
extension of the CSP in the BSP prototype. But there are some differences. First of all no
sound is needed to gather GPS and directional data. Neither is there any use of a nice looking
graphical interface which makes the exclusion of the BSP software on the PDA an obvious
fact15. The software is further explained in chapter 3.3.

The Bluetooth GPS receiver that the BSP prototype uses will also be used when gathering
GPS positions during the test runs. The update frequency of the Bluetooth GPS receiver is
approximately one set of values every second (i.e. frequency equals ~1 Hz). To gather the
direction data for the gaming device the Microstrain sensor module is required. This will emit
sets of direction data approximately every 1/70 second (70 Hz). Furthermore, the GPS
receiver outputs latitude and longitude. The latitude and longitude are therefore converted to
ordinary x- and y coordinates for easier calculations.

To list some other hardware needs; there is the fact that the PDA could run low on batteries
and therefore the power converter could be a nice addition when conducting test runs.
Another fact is the need of a laptop since the development of OSREP algorithms requires
compilers etc. to develop applications. But since there are not to be any client-server
application made, there is no need for having a wireless AP while conducting the test runs.

15 This is a significant fact that greatly affects part 1 of the customized model.

1

Road

GPS
position 1

GPS
position 2

2

3

Objects

?

?

P
P’

Figure 3.1.2.4: In this scenario the concept of the Microstrain
sensor errors is shown.

Master Thesis Report – The OSREP Theories

15

4. The OSREP Theories

Explained in the problem description in chapter 1 the major approach for this thesis is to
divide the new generation of pinpointing called OSREP into two parts. The first is to
determine when the player is aiming and the second is to determine where in the real world
the player is aiming. These two parts are as told presented here as the new OSREP
algorithms. In this chapter definitions and mathematical theories are presented and in a
deductive manner they present final theories for the two algorithm parts of the OSREP that is
used for implementation.

To start things off, some definitions has to be made as to in which kind of situations the
OSREP algorithms should work and also some physical/spatial logical reasoning that is used
in the theories.

4.1 Definitions
To use logic reason is very efficient in many situations. The logic reasoning and calculations
presented here severely decreases the complexity of the OSREP algorithms. To reduce the
complexity there are definitions and investigations made as for road types and the spatiality
of how a player pinpoints objects.

4.1.1 Investigating valid road segment types
When considering for this project a valid OSREP situation the figure 4.1.1.1 could be a good
representation of how the roads traveled on could look like. The types of roads that are
investigated in this thesis are the classic S-curve, a strong curve, a less strong curve and
finally a straight road. The reason for not investigating roads with more curves than an S-
curve is on the one hand that the time between two GPS positions are approximately only
one second and on the other hand that the speed limits and constructions of the roads in
Sweden are highly regulated to ensure high traffic safety. These reasons will become more
evident when reading this sub-chapter.

Figure 4.1.1.1: Road scenarios.

GPS
position 1

GPS
position 2

GPS
position 1

GPS
position 2

GPS
position 1

GPS
position 2

Scenario 4: Straight road segment

Scenario 1: S-curve

Scenario 3: Curve

Road

Road

Road

GPS
position 1

GPS
position 2

Scenario 2: Long curve

Road

Master Thesis Report – The OSREP Theories

16

From this figure there are some significant conclusions to be drawn but also there are some
facts that become obvious when considering real world objects (e.g. the geometry of a car,
width of a road, etc.). Combining those facts with some physical properties like how far a car
can get in one second (the time between two GPS positions) the complexity is reduced.
Firstly, the distance that a car can travel is dependent on the speed of the car. When I did my
test runs a speed of approximately 50 km/h was held (due to speed limit). But since I want
to do the forthcoming calculations for several speeds the table 4.1.1.2 shows the distances
depending on speed while the time interval is considered to be one second long.

Speed [km/h] Distance [m]

30 8.33

50 13.89

70 19.44

90 25

110 30.56

These distances show how long the road segment between two GPS positions could possibly
be while traveling at the different speeds. But using logic reasoning it is an obvious fact that
scenario 1 (an S-curve) cannot occur for any speeds since the distances are too short. At
least the distances are too short for a car (e.g. a normal sized car is assumed to be about 4.5
meters in length) to be able to pass through so many curves in only one second at those
speeds. Although when given these distances and considering the standards that the Swedish
Road Administration (called VV, because they are known as Vägverket in Sweden) uses to
construct roads the calculations in Appendix B could be done. Those calculations are done
using the distances in table 4.1.1.2 as the sector of a circle in the formula for a sector of a
circle16 together with the standards from VV for minimal radiuses of a horizontal curve17 as
the radius of the circle. Table 4.1.1.3 shows the results from those calculations.

Speed [km/h] Radius [m] Calculated Angle [degrees]
30 20 23.86
50 90 8.84
70 200 5.57
90 400 3.58
110 600 2.92

Through this it could be argued that the angle (i.e. how narrow a curve can be) is very small
which concludes that there could not be any sharp curves passed while traveling at the
considered speed limits. Therefore the kind of road segment (between two GPS positions) for
which the forthcoming theories are to be presented for is only straight ones. I.e. the road
segments for which positions and directions are calculated for are discretisized as being
straight lines. For the reader to grasp somewhat how this could look like, figure 4.1.1.4 gives
an approximate straight line road segment (of length 8.09 meters). Since the length of the
circle sector is 8.33 meters (the distance in table 4.1.1.2) not much of a curvature could be
present. For the higher speeds there would not be any differences since the radius becomes
exponentially larger while the length of the circle sector increases linearly (compare distance
in table 4.1.1.2 with the radius in table 4.1.1.3). These investigations offer a severe decrease

16 See Appendix A for reference to how such a calculation is done.
17 Using a “Low” standard of the road along with the highest percent of askew, this allows for
a shorter radius which implies sharper curves. More information could be seen on page 60 in
the Linjeföring document (in Swedish) at: http://www.vv.se/templates/page3____8165.aspx.

Table 4.1.1.3: Angles extracted from the calculation in Appendix B scenarios.

Table 4.1.1.2: Distance traveled at a certain speed during one second.

Master Thesis Report – The OSREP Theories

17

of complexity regarding the OSREP algorithms since it is easier to do straight line
computations.

Now the reader might think; what if the GPS is not as good that it continuously would output
positions every second, I think I need to state that it happens rarely. Experience gathered
from test runs along with what BSP developers say; the GPS positions have extremely
seldom been received with more than one second apart. Based on the data gathered from
more than 50 test runs I argue that it happens so rarely that it is close to a non-existent
case. Furthermore that the player would aim during such a case is thereby even more
unlikely to happen. But it could happen; for instance in a tunnel there would not be a GPS
position acquired, but in that case the sight range (i.e. the range that the player is assumed
to have) would be significantly less and perhaps even non-existent. In addition to this there
are new GPS receivers that are even better than the one used during this thesis project when
considering update frequencies.

4.1.2 How does a player pinpoint an object
In this sub-section I clarify what I have considered to be a valid way of pinpointing objects,
valid in the sense that when the forthcoming algorithms will be applied or not. The theory for
how a player is pinpointing an object is dependent on two things; the speed of the car and
the distance to the object in question. The distance to the object is regarded to be how far
out from the road the object is laying.

Based on the experiences I have got during the acquirement of my own sensor data I believe
that I have a great insight into how a player would behave while pinpointing an object. My
behavior during my test runs are considered to be of interest since during those kinds of test
runs the focus have laid on the actual pinpointing of objects. The focus on the PDA only
occurs when initializing a test run (i.e. starting a recording) making it possible to stay
focused on the object that is to be pinpointed. This is achieved due to the fact that I did
design the tpPPC18 for blended focus of attention19. This means that I as a player can focus
on the things happening outside of the window instead of focusing on what happens on the
screen of the PDA. I.e. there is no need for me to blend my focus of attention with anything
else but to pinpoint an object on the roadside.

Going over to the more physical part of pinpointing figure 4.1.2.1 visualizes how the gaming
device supposedly is spatially moved during an event of pinpointing. I argue that to make a
valid attempt to pinpoint an object it is required that the player aims toward the object

18 tpPPC is an acronym for thesis project Pocket PC. The data acquirement application is
further described in chapter 5.1.
19 Blended focus of attention (or to balance the focus of attention) is a term explained by
Brunnberg and Juhlin (2006) as a way of designing; the blended attention in this way of
design occurs when players engage in gameplay and interact with a computer in various
ways.

20m

 8.09m
 23.86°

Road

20m

GPS
position 1

GPS
position 2

Figure 4.1.1.4: Approximate road segment given the calculations made.

Master Thesis Report – The OSREP Theories

18

before the car has passed it and keep pinpointing the object until sometime after the car has
passed it. This is clarified by figure 4.1.2.1.

Although the case in the figure is an ideal case it clarifies what constitute as a valid attempt.
The difference between a previous direction and the current is denoted as di, this is retrieved
from the AngRate output from the Microstrain sensor module. The AngRate is the rate at
which the gaming device is rotated around the z-axis in radians/second. The direction or in
other words the angle is a recursive result from calculating with the time of reception (in
seconds) for the previous angle and the current angle rate (in radians/second) and its time of
reception (in seconds) like in formula 4.1.2.2.

()()1
0

* _ _ −
=

= −∑n i i i

n

i
angle AngRate AngRate time AngRate time (Formula 4.1.2.2)

Since the angle depends on a time difference that actually is decided by the update frequency
of the Microstrain sensor module; in a discrete case that time difference would be the same ,
since the sensor module emits sensor values continuously every seventieth of a second (but
for two different modes, for mode 2 every 1/35 second and for mode 3 every 1/35 second).
This means that formula 4.1.2.2 could be generalized to be:

0

1
35n

n

i
i

angle AngRate
=

 
=   

 
∑ (Formula 4.1.2.3)

Furthermore the angle is increasing when approaching an object while it will decrease when
the player has passed the object. This means that the absolute peak for the angle is 90
degrees; being the angle when the player is located at position PP in figure 4.1.2.1. The
calculation of the maximum AngRate in degrees shown in Appendix B indicates that when the
player is passing an object the angle depends on the velocity of the car, v and the distance B
between road and object like in formula 4.1.2.4 (i.e. when calculating with a right triangle at
the time when the car is passing the object).

Object 1

d1

GPS position 4

road

Direction of travel

d2
d3

d4 d5

di = directions [°]
where i = 0,1,2,3,4,5

GPS position 2 GPS position 3

d0

PP

B

GPS position 1

AngRate_time difference

Anglen

Figure 4.1.2.1: Showing how pinpointing should be done from
the player‘s perspective

Master Thesis Report – The OSREP Theories

19

1

2
2

1
35

cos
1

35

n

v
angle

B v

−

      =  
  +     

 (Formula 4.1.2.4)

The above formula is of course for a single step in time for the directional angles. As seen in
appendix B the general version of the formula; 1/35 is exchanged with time t which would be
equivalent to the time difference in formula 4.1.2.2.

Another observation from my test runs is that I was keeping the gaming device quite still
when not aiming towards anything. (Or in the other end if the player is sweeping the gaming
device quickly from side to side the variance, described in chapter 4.2, of the angle would be
too great and therefore I would assume that the player is not pinpointing anything.) But as
soon as I saw an interesting object I quickly pointed the device towards it and tried to keep it
as steady as possible. This could give a hint as to how the first algorithm of OSREP could
sense that the player is trying to pinpoint an object. A long with this behavior while
pinpointing I noticed that when I stopped aiming my body was pretty much twisted
backwards since I tried to aim for the interesting object as long as it was in my line of sight.
Therefore when I moved so that I sat up straight the gaming device tagged along with my
movements. This created a great leap in degrees over a short period of time and the variance
was greatly increased.

4.2 First algorithm of OSREP
The first algorithm of OSREP is the algorithm that in some way should sense when the player
has started to pinpoint an object of choice. The most obvious way this could be done is
through calculating the variance of the acquired AngRate values. This type of calculation
shows how much each value differs from a mean value. The mean value is calculated through
the formula 4.2.1 for n gathered values in an interval [a, b]. The need for a closed interval is
to be able to define a current set of angle data to do computations on. Where n would have
sufficed to be approximately the angle values during 200 / (speed of the car) seconds to
distinguish them from other cases (such as a random constantly increasing AngRate). 7
seconds since it is half of the time it takes to pass an object if the player has a sight range of
200 meters and traveling at speed v (e.g. 200/(50km/h/3.6) = 14.4 seconds).

=
= ∑

b

k
k a

1
angle angle

n
 (Formula 4.2.1)

From this the variance is calculated by using formula 4.2.2:

σ
=

= −∑
n

2 2
A i

i 1

(angle angle) (Formula 4.2.2)

As I mentioned earlier there was a phenomenon with a great variance in the end of each
event of pinpointing is clearly seen in figure 4.2.1. This is considered to be a signal that the
player has stopped aiming. But it will only be signaling this if and only if this algorithm has
detected that the player has started to pinpoint (i.e. you can not stop anything that has not
been started). As a security measure I also recorded the button states which were used as
described in the “Conducting Test Runs” section of the implementation chapter. The button

Master Thesis Report – The OSREP Theories

20

states is set to 1 (one) if the button is pushed to signal that I have started to aim and when
released it signals a 0 (zero).

Although these did result in some nice graphs (e.g. an example is shown in the result
chapter). There were some interesting discoveries made during the minor development-test
cycle that lead me to believe that the importance of the first OSREP algorithm had been
highly overrated. The proof of this is seen in the result chapter in the form of graphs
computed from real world test runs. Along with that; Appendix D shows the feedback from
running the code with a closed interval versus letting the second OSREP algorithm run
without closing a set with the recorded button states which would correspond to letting the
first OSREP algorithm (as far as it has been worked, seen above in this section) decide in
which interval to run second OSREP algorithm. Also see figures 6.4.2.2 and 6.4.2.3 for graph
results of these facts. Because of this development progress the theory of the first OSREP
algorithm is not further pursued and reason for presenting it at all is for future development.
It could be useful to have this kind of approach in mind. Someone else who is a lot better in
the area of signal processing (e.g. probability theories) could do something nice future work,
I think.

4.3 Second algorithm of OSREP
The foundation of the second algorithm of the OSREP algorithms is the data found in between
the start and stop defined by the first OSREP algorithm. The angle of every direction data is
calculated and further on the location in the world were the object lays is retrieved through
triangulation by finding all line intersections.

To understand this it is necessary to know how the line intersections are calculated. In the
next sub-chapter (4.3.1) the complete calculation is shown with its corresponding figures
explaining it graphically. It shows that given two GPS positions (converted from the WGS84

Figure 4.2.1: Example of how the variance looks like for the first algorithm of
OSREP. This is from Test run 1.The dots are button pushes used as key references for

comparisons between test run and computed values.

Master Thesis Report – The OSREP Theories

21

format into the Swedish RT90 format20) and the direction data in between those, all
intersection points for all direction line could be calculated. Following this an area of interest
could be estimated and it is assumed that the center of this area is considered to be the
location of the object that the player has tried to pinpoint.

4.3.1 Line Equations and Line Intersections
When two GPS positions has been received, all the directional data (i.e. the AngRate with
timestamps between the timestamp of GPS position 1 and the timestamp of GPS position 2)
could be used to derive the location of an object. Or more specifically this is done in the
interval where start and stop are given by the timestamps of the result gathered from the
first algorithm of the OSREP algorithms.

From known data and as illustrated in figure 4.3.1.1 I derive the line going through GPS
position 1 and GPS position 2 by using the formula for the equation of a line21 when two
points are known, the result is seen in formula 4.3.1.2.

() ()1
2 1 1

2 1

− 
= − + 

− 

x x
y y y y

x x
 (Formula 4.3.1.2)

Where 1 2≠x x and 1 2≠y y . From this the position of the car can be decided by taking the time

stamp from the acquired direction data (D in the figure) to see how far between the GPS
positions the player has traveled.

D gps1
D

gps2 gps1

timestamp timestamp
r

timestamp timestamp

−
=

−

 
  
 

 (Formula 4.3.1.3)

20 The transformation for doing this is shown for the Python Programming Language in
Appendix C. A very brief description is that the WGS84 geodetic latitude and longitude is
transformed into grid coordinates x and y through the use of a Direct projection available at
the web-site of Lantmäteriet (http://www.lantmateriet.se).
21 To get the equation of a line I used the formula on p. 133 in “Åtta kapitel om geometri” by
Anders Tengstrand.

road

B

rD

Object

(gps1x, gps1y)

ls

D

y-axis

x-axis
D’

POI

?

(gps2x, gps2y)

(gps3x, gps3y)

(gps4x, gps4y)

?’

Car Car

y’
y

r’D
ls ’

O=180-((180- ?’)+ ?)

Figure 4.3.1.1: Line equations and line intersection.

Master Thesis Report – The OSREP Theories

22

Where rD is the progress the car has made between GPS position 1 and GPS position 2. To
get the x- and y-coordinate for the origin of D the magnitude of ls has to be calculated. This
is done by formula 4.3.1.4.

()22

x x y y
ls (gps1 gps2) gps1 gps2= − + − (Formula 4.3.1.4)

By multiplying the magnitude of ls with rD the ratio (rD*|ls|) / (|ls|) gives the point of origin
(POO) for the direction D as shown in formula 4.3.1.5.

If ()Ds ls r *ls= − , then Formula 4.3.1.5 looks like:

()()
()

()()
()

x x y yD D
D x y

D D

POO (D , D)
r * l s *gps2 s * gps1 r * ls * gps2 s*gps1

;
r s r s

=
+ +

+ +

 
 =
 
 

This will help significantly when calculating every point of intersection (POI as in figure
4.3.1.1). But first the equation of the line for direction D has to be calculated which is done
by using formula 4.3.1.6 which is found on p.80 in the “Mathematics Handbook for science
and engineering” by Råde and Westergren.

()x yy x D tan Dθ= − + (Formula 4.3.1.6)

When x=0; formula 4.3.1.6 becomes the formula below (Formula 4.3.1.7):

()()
()

()()
()

y y x x

y x

D D

D D

r *ls * gps2 s * gps1 r * ls *gps2 s * gps1
y D D tan tan

r s r s
θ θ

+ +
= − =

+ +
−

Further on the equation of the direction line then becomes; by using formula 4.3.1.2 with
(x1=Dx; y1=Dy) and (x2 =0; y2=Dy-Dx*tan?):

() ()()

()

tan

tan

tan

0

1

tan

θ

θ

θθ

−

−

−

− 
= − + 

− 
 

⇔ = − + 
 

⇔ = +

x
y x y y

x

y
x

y

x

x

D D

D

x D
y D D

D

x
y D

D

y x D D

()()
()

()()
()

y y x xD D

D D

r * l s * gps2 s*gps1 r * l s * gps2 s * gps1
y xtan tan

r s r s
θ θ

+ +
=

+ +
+ −

The last row is formula 4.3.1.8 which shows the equation of any direction line between GPS
positions 1 and 2. Thereof the intersection between directions D and D’ is found where they
have the same x and y coordinates. These coordinates is found through testing coordinates
for both lines and comparing the result in the same cycle in a for-loop. This will also reduce
redundant comparisons. If the maximum line of sight the player is able to see is assumed to
be 200 meters (circle radius = 200 meters of obstacle free line of sight) the pseudo-code
looks like in figure 4.3.1.9.

(){= ≤ + +for x 0;x 200;x

Master Thesis Report – The OSREP Theories

23

()()
()

()()
()

()()
()

()()
()

{

D D

D D

D' y y D ' x x

D ' D '

' '

y y x xr * l s gps2 s * gps1 r * ls gps2 s * gps1
xtan tan

r s r s

r * l s gps4 s'*gps3 r * l s gps4 s'*gps3
xtan ' tan '

r s ' r s '

y ;

y ' ;

if(y y')

θ θ

θ θ

+ +

+ +

+ +

+ +

= + −

= + −

 
 
 
 
 
 
  
 
==

 ()return x,y ;

}

}

Since the (x, y)-coordinate that is returned is the corresponding coordinates for the POI in
the global coordinate system these values could be used directly to find the location in the
real world. Although the whole set of these points will create a geometry which I have chosen
as a circle where the radius is defined to be the center of the spanning area. To make the
representational geometry more valuable the geometry is weighted by some factors that are
reasonably logical to have some effect on how plausible each of the POI is.

4.3.2 Weighing POIs to Achieve POI Convergence
The first thing that affects how good the relation is between two POIs is how far away from
each other they are. I assume that the largest object the player would consider as interesting
enough to leave some information at would be an arena which could span up to perhaps 200
meters in length. Although keeping this master thesis simple I will instead consider the
largest object to be an ordinary transformer housing of 9 meters in width. This of course
corresponds well to what kind of objects I was aiming for during my test runs. By using this
assumption there is the question of which of the two directions that would be considered to
be the right one. This of course has to be dealt with by computing another direction line and
if that is closer than 9 meters from any of the other two, those two will be left to be a part of
the representative geometry.

Another thing that is done when weighing the POIs is to measure the concentration of each of
them. To do so I decided to check every POI against every other POI in the same set. If they
lay within an object tolerance of 9 meters (e.g. the 9 meters mentioned to be the largest
object width) they get a hit. Then to only get the POI with the greatest hit count would be the
most plausible POI and thereby the set of POIs have converged into one Point-Of-
Intersection. Actually the POIs with greatest hit count and second greatest are retrieved do
determine the object width.

4.3.3 Initial Angle – The Offset
As seen in figure 4.1.2.1 there is an initial angle d0 that could be perceived as not belonging
to this part of the OSREP algorithm. I.e. I said earlier that two GPS positions are needed and
the d0–angle is not a part of any GPS position interval. The reason for considering an offset
angle is that the OSREP algorithm has to be flexible in the sense that it should be able to be
put in use at any time in the BSP prototype. Thereof there are some further computations
needed to determine in what situation that OSREP is put in use. It is here the offset angle
presents itself as a part of the OSREP algorithm.

To be able to determine an offset that could be used for the rest of the pinpointing interval
(from when the OSREP is applied to when it has detected an object) some performances are

Figure 4.3.1.9: The pseudo-code for finding where two lines intersect.

Master Thesis Report – The OSREP Theories

24

evaluated. The result that presents the best performance in valid angles found and in most
POIs found is considered to be the accurate offset.

An easier explanation for this is that I iterate the offset angle over an interval from 0 degree
to 180 degrees. Then when the iteration is over and the results are evaluated for every
iteration. Then the offset angle that produces the valid angles and the most POIs is chosen. A
valid angle is an angle that results in y and y’ in figure 4.3.1.9 being in the line of sight of the
player and y-y’ being not more than 9 meters from each other (e.g. the 9 meters are what is
called the object tolerance, a resolution for how wide the target area of the pinpointing is).

Master Thesis Report – The OSREP Implementations

25

5. The OSREP Implementations

This chapter entails how the different algorithms that OSREP consists of has been
implemented beginning with the data acquirement tool. Mostly this chapter describes the
code that has been written but much effort is put on making the chapter understandable,
therefore there are more class-diagrams than there is actual code. Starting every sub-
chapter is an overview that describes the software in general for each individual part of the
customized model22. This results in revealing the implementation in a chronological order;
starting with the tpPPC application and how the test runs were conducted. Then I am going
over to the visualization applications and finally describing how the algorithms were
implemented.

5.1 The tpPPC Application
This is a description of the data acquirement tool called thesis project Pocket PC (tpPPC). The
first sub-chapter 5.1.1 makes the connection between implementation chapter and the model
I used for this master thesis project.

5.1.1 Part 1 of the model – A tool preparation part
In this part (shown in figure 5.1.1.1) the data acquirement tool have been created to be able
to gather interesting and relevant sensor data.

The tpPPC application is a MFC application made in Microsoft Visual Studio 200523 (VS2005),
in the C++ language. It has been done this way since was easy to c reate and debug the
application with a Pocket PC. Also another reason for this is that the BSP prototype is already
written in C++. The way this is done is quite systematic. The systematic way (with
requirements that has been fulfilled) was:

1. Firstly the application made is compatible with the Pocket PC 2003 platform.

2. Furthermore the syntax of the code for the application should resemble the existing

code written for each sensor module. Although the code for the Microstrain sensor
module is to be reconstructed since it could be argued to be not well structured, this
wish has been expressed by the BSP development team. This implies developing the

22 The customized model presented in chapter 2.1
23 More about Microsoft Visual Studio 2005 at: http://msdn2.microsoft.com/sv-
se/vstudio/default.aspx.

Figure 5.1.1.1: First part of the model.

Gather
Empirical Data

Part 1

Empirical data acquirement tool

Master Thesis Report – The OSREP Implementations

26

gyro code in a way to make it resemble the GPS code and of course makes it possible
for others to more easily grasp the essential parts of the code. To meet the latter
requirement the code was written in a more well-structured and well-documented
manner (in my own point of view).

3. The parsing of the sensors data was made in a logically way so that further scripting

of the output data files was easy. This implied easy access to the different types of
data, practically made so that the recordings was saved in separate files (e.g. saved in
XXXXXX_logfileNrNN.txt files where XXXXXX is the type to be recorded and NN the
batch number of the current test run). The batch numbers serves as the key to
knowing if any of the three files recorded in one batch are from the same test run.

4. Finally there were of course demands on the usability of the tool. The tool application

should run smoothly and offer adequate performance in speed, because it should not
hinder the recording of sensor data while running the tool in a real world environment.
That is running the tool while traveling in a car and aiming for GIS objects; the GIS
objects have been selected for future reference making it possible to distinguish an
actual object to make comparisons with the OSREP calculated locations to ensure the
validity and to verify that the triangulation worked.

And as shown in the figure the finalizing arrow means that test runs are made with this tool
to gather (i.e. records data into the files mentioned) the necessary data. After that empirical
acquirement was done the second part followed consecutively.

5.1.2 Conceptual Design of the tpPPC Application
This sub-chapter serves as the more code concentrated description of the tpPPC application.
In figure 5.1.2.1 a class view is presented of how the tpPPC application was done. This class
view shows the different classes that constitutes three different blocks of the tpPPC
application.

A list of descriptions corresponding to each block (i.e. the Microstrain sensor module, GPS
module and PDA blocks) is hereby declared. The descriptions tell the purpose of the class and
when applicable it tells about the class’s relations to other classes. In the Microstrain sensor
module (MSM) block the following classes are defined:

Figure 5.1.2.1: The conceptual design of the tpPPC application.

GPS module

PDA

Microstrain
sensor
module

SensorControl

RECORDER

LOCATION DIRECTION

RecorderDlg

BUTTON

GPSPARSER GYROPARSER

GYROCOMM GPSCOMM

Thread

POS ANGLE

Thread

Master Thesis Report – The OSREP Implementations

27

• BUTTON; Simple class with instance variables that constitutes the properties for

button states, time stamps etc. a long with a get-method. The BUTTON class is used
by the GYROPARSER since the button hardware is connected to a pin on the
Microstrain sensor module hardware. Thereof this is the easiest way to connect the
button with the rest of the application.

• ANGLE; Contains instance variable angle and its corresponding get- and set-methods

along with some other useful angle calculation methods.

• DIRECTION inherits ANGLE since directions is a form of angle. Although an instance of

this class has properties for the different kinds of modes in the sensor data from the
Microstrain sensor module. The instance also keeps track of its timestamp.

• GYROCOMM; this class polls direction data through the ports it has opened to the

MSM. This class inherits Thread since the port to the MSM has to be kept alive and
listened to all the time.

• The GYROPARSER class inherits the GYROCOMM class. For every button data this class

checks if the switch of the button is valid. For every byte of direction data this class
distinguishes the different types of values and stores them into a DIRECTION object.

In the GPS module block the following classes are defined:

• The POS class contains specific methods for translating geodetic latitude and longitude
into degrees or radians, if this is wished for.

• LOCATION inherits POS since locations are positions. Although an instance of

LOCATION has properties as to storing latitude and longitude, speed and course. Also
an instance of LOCATION stores the timestamp of its corresponding latitude and
longitude.

• GPSCOMM; this class establishes connection to the Bluetooth GPS module by opening

a port through which an instance of this class receives bytes of location data.

• The GPSPARSER parses the received bytes by distinguishing the different types of
values and stores them into a LOCATION object.

To make all this possible to control the PDA block contains:

• A RECORDER class that starts threads to every log file. But before doing so it searches
the folder in which the log files are to be placed. This is how the files are numbered
consecutively with an increasing batch number corresponding to a unique test run.

• The RecorderDlg class serves as the dialog where the start and stop commands are

given. Also the update frequencies for the position and direction data are seen in it
along with the button states. This class initiates an instance of the SensorControl class
when the user presses start.

• SensorControl inherits both GPSPARSER and GYROPARSER. The SensorControl class is

where a RECORDER instance is created for recording every processed sensor data into
three different log files as mentioned 5.1.1. Moreover this class deals with the input
from the user passed to this instance from the RecorderDlg. I.e. when the user
presses start this class creates instances of the GYROCOMM and GPSCOMM. These
open the ports and start to listen to incoming bytes. And when those bytes have been
parsed the SensorControl answers to a call to each update method that is

Master Thesis Report – The OSREP Implementations

28

implemented as virtual update methods in each parser class. The corresponding
update method in SensorControl stores values into the log files through the
RECORDER object.

5.2 Conducting Test Runs
The test runs that were conducted took place in the island of Lidingö just north-east of
Stockholm, Sweden. To gather useful data this location is used because the BSP development
team could use the data for future comparisons when using their own simulator which uses
GIS data. The team has such GIS data for Lidingö along with a map over Lidingö.

The main objective for the test runs was to gather button states, GPS positions and direction
data simultaneously to be able to analyze player behavior in a BSP similar environment.
Therefore I used tpPPC together with a sketch pad (for making notes, which could be found in
Appendix E) and I sat as a passenger in a car traveling through the road network on Lidingö.
The main things that were done during a single test run were to begin with to initialize tpPPC
by starting it. After that I very intensively focused on finding appropriate targets that I also
thought could be suitable GIS objects for the BSP stories. When I found one I pressed the
button on the gaming device and tried to pinpoint the object. To use this button acts like a
security measure if I had not been able to derive the first OSREP algorithm. After that I wrote
down what type of object I had tried to pinpoint along with which batch number the test run
belonged to. Then it was time to do it all over again.

Figure 5.2.1: Example of test run showing player path and also showing where the
pinpointed object’s coordinates should be.

Master Thesis Report – The OSREP Implementations

29

An example of a traveled route is shown in figure 5.2.1 where I have also marked out the
object that I tried to pinpoint (I have also marked out the coordinates for that object using a
map tool to extract coordinates in RT90 format , Objectx0=1510414.683847 and
Objecty0=6582865.793460). For future reference the distance B between
Roadx1=1510423.538816 Roady1=6582949.361319 are calculated using Pythagoras (the unit
for these coordinates is meters) like in figure 5.2.2.

Distance B = () ()2 2
1510423.538816-1510414.683847 6582949.361319-6582865.793460 84.03569202+ = m.

5.3 Visualization Applications
This chapter is constructed much like 5.1. The first sub-chapter 5.3.1 expresses the
implementation of the GISObjectApp in the sense of the customized model. But unlike
chapter 5.1 this chapter describes two different solutions to visualizing OSREP. Although it is
actually one half-finished application whiles the second solution is an ad-hoc Python hack for
showing the mathematics behind the OSREP algorithms.

5.3.1 Part 2 of the model – Analyzing and Visualizing
The second part; shown in figure 5.3.2.1 from the customized model in figure 2.1.1, have
dealt with preparing data and script it so that it could be computed on and visualized.

The scripting has been made through the use of Python24 modules extended with a MFC
application made in VS2005, which have been chosen because of the same reason as with
the tool presented in chapter 5.1, that the BSP prototype has been developed through the
use of Python and VS2005. This MFC Application is called GISObjectApp and is essentially a

24 More about the Python programming language at: http://www.python.org.

Figure 5.2.2: Distance B between road and object.

Figure 5.3.1.1: Second part of the model.

Algorithm
development

Part 2

Deriving

theories from
data

Analyze data through
visualization

Prepare data by

scripting

2 2B x y= +
y

x (1510414.683847 , 6582865.793460)

(1510423.538816 , 6582949.361319)

x-axis

y-axis

Master Thesis Report – The OSREP Implementations

30

dialog with an ActiveX control for showing the GIS objects and a map over the Lidingö area in
Stockholm. Why there specifically should be an ActiveX control in this application was
because of the MapInfo MapX 5.0 software, which is written in C++ and is very easy to
implement as an ActiveX control.

To motivate the choice to even considering the development of this GISObjectApp was to
make it work like an easy-to-integrate module for the BSP. In this way an extended Python
module would be developed and it would be easy to just copy-paste the code and insert into
the server-side/simulator of the BSP prototype. Although this is a nice thought it turned out
to be somewhat time consuming. So therefore; as explained in the list below, some other
Python modules were used.

The requirements that were brought to attention (and how things were done to meet them)
for this part was:

1. A tool that was easy to use was of course a top priority, the application should be able
to start and stop simulations (i.e. simulations with the gathered sensor data).
Furthermore the ability to activate and deactivate the algorithm and some other basic
controls as for viewing the GIS Object Map25 (e.g. zooming in and out) was also
required. To switch on and off the algorithms was of course because of the fact to
easily see performance differences. Also to see a graph window presenting
calculations made to the gathered sensor data is a nice feature both when presenting
result as to quickly see progression of the forthcoming development of the OSREP
algorithms. Finally, to implement some simple map controls was an easy task since
those are pretty much already accessible functions for them in the MapInfo MapX 5.0
software and the use of them is quite obvious.

2. GISObjectApp was further intended to be a usable tool for the verification and

validation (part 3 of the model) but as already mentioned the application was never
finished and because of that it offers no usable controls as to presenting and
visualizing nice graphs for analysis nor do it allow for viewing GPS positions and
directional information on the map. This makes it a rather useless tool in its current
state.

3. To be able to finalize this part there was a requirement to be able to see how the

algorithm performed on the gathered data while developing it. To do so Python script
was developed using the Numpy26 and Matplotlib27 modules which made it possible to
plot graphs. These graphs was intended to be the graph window part of the
GISObjectApp and in the simplest way presented as an image when the simulation
had finished processing the sensor data. Unfortunately this integration was never done
due to the time constraints in the project; more focus was instead put to deliver any
sort of interesting results.

The final output of this part was to implement the algorithms from the derived theories. This
is shown as the big arrow pointing downwards in the figure above. That arrow is further
explained in the chapter 5.4 as the implementation of the OSREP algorithms.

25 The MapInfo MapX 5.0 ActiveX control; it shows GIS objects and a map over Lidingö.
26 More information about the Numpy module could be found here:
http://www.scipy.org/NumPy.
27More information about the Matplotlib module could be found here:
http://matplotlib.sourceforge.net.

Master Thesis Report – The OSREP Implementations

31

5.3.2 Conceptual Design of the GISObjectApp
This section offers a more code concentrated description of GISObjectApp. This is presented
in this report as an aid for further development if there ever will be any. The design concept
is viewed in figure 5.3.2.1.

The block called Python Scripts consists of a python script that reads the log files and for
each value it reads carries out some computation on. These computations would then be
what have been referred to as the OSREP algorithms. Meanwhile the class PythonModule
constitutes the negotiator between the MFC application and the Python scripts. This class is
constructed as an extending python module 28, called “sim”, which actually extends the
Python Script block in figure 5.3.2.1. With this extension the Python Script can use methods
in the PythonModule class to interact with the rest of the C++ written application. The major
reason for extending a python script like this is because development goes faster.

The two classes named MAPX and MapxEx are described as:

• MAPX is a class containing many pre-defined functions regarding drawing on the map,
map layers, etc. MAPX is delivered as a sample class with the MapInfo MapX 5.0
software.

• MapxEx on the other hand is an intermediate class containing functions relevant to the

GISObjectApp while using some of the pre-defined functions in the MAPX class.

The block named UI related consists of three c lasses of which the RECORDER class already
has been presented (in chapter 5.1.2). The two classes that are left are:

• Simulator inherits MapxEx since it should be able to draw objects onto the map area29
of the GISObjectApp, such as gaming device directions and player positions. As a final
stage; a geometry representing the object that the player has visualized is placed on
the map. Beside this the Simulator class runs two separate threads which listens for
position and direction events. When such an event arrives the intention (observe this

28 More about extending python scripts in the “Extending and Embedding” chapter in the
ActivePython 2.4 Documentation found at:
http://aspn.activestate.com/ASPN/docs/ActivePython/2.4/python/ext/ext.html.
29 A visualization of the current version of GISObjectApp is found in chapter 6.3.

Figure 5.3.2.1: The conceptual design of GISObjectApp.

Sensor related MapInfo MapX 5.0
related

UI related

Python Scripts

RECORDER GISObjectAppDlg

MapxEx

PythonModule

MAPX 3DVector

SensorObject

Simulator

Master Thesis Report – The OSREP Implementations

32

is not finished) is that it should be drawn on the map, making it possible for the user
of the GISObjectApp to view the simulation of the data gathered from the test runs.

• The GISObjectAppDlg class; which is a simple dialog with a bunch of controls already
mentioned in sub-chapter 5.3.1.

Going over to the sensor module block, these two classes is dealing with how to represent
sensor data to the simulator class and for easier storing of arriving position and direction
events. The 3DVector is sort of self explanatory; it is just a class making it possible to
represent the direction data as vectors. The SensorObject class is just a generalization of all
sensor types (e.g. GPS sensor, direction sensor and button sensor).

5.3.3 Python Script Hacks
It turned out that there were some sweet Python modules that could help in visualizing
OSREP results. These two modules have already been described in 5.3.1 as modules making
it possible to create plots. I want to emphasize that although this was some last minute
python hacks the mathematics behind these simple visualizations are still valid. It is only the
simplistic kind of visualization I want to call hack (i.e. a hack in not carefully coded and
documented).

The change of visualization application had some impact on how the validation and
verification was done. While verifying that the algorithm works; the third part of the
methodology model (shown in figure 5.3.3.1 below) acted like a final test. To make the
validation and verification there was actually no need for a fancy visualization application.
Instead this part was visualized with the more simplistic use of the produced Matplotlib
graphs. So there was never any loss of important features due to this change of plan, it only
made things look uglier (at least I think so).

5.4 Implementing OSREP Algorithms
As mentioned earlier the actual algorithms that constitute the OSREP are made in the Python
Programming Language. In figure 5.3.2.1 it is shown as the block on the top left named
Python Script. This Python Script is divided into the following parts:

1. Converted the data in the log files into lists. This allowed for easier handling and
computations.

2. Selecting sets of values to simulate real world, because in the real world there is not a

finite set of direction data and position data covering the whole scenario of pinpointing
an object. Instead the algorithm works for small sets within some interval that in the
end will entail the whole pinpointing scenario but to begin with is just a couple of GPS
positions with the direction data in between those.

3. For every small set of data (i.e. a small set of data is at the minimum 2 GPS positions

and the direction data in between those, as mentioned in earlier chapters to be the
interval decided by the first OSREP algorithm) the theories stated in 4.2 and 4.3 are
carried out and plotted. Although a remark is to be put here since some very

Figure 5.3.3.1: Third part of the model.

Part 3 Validation/Verification

Algorithm

visualization

Results

Master Thesis Report – The OSREP Implementations

33

surprising results came up while implementing OSREP. The need for a user input to
signal start and stop of the GPS positions interval was not needed. The second OSREP
algorithm30 seems to be working by its own. More on this in the result chapter.

4. Using the Python Hack a plot is presented showing the path that the player has taken

with the directions graphical representation left out but a geometric object (e.g. a
filled circle) has been placed where OSREP thinks the player has aimed.

Verification of the fourth step is to compare the computed locations and the correct answers
(i.e. the correct answer is extracted from the combination of the notes I wrote during the test
runs and a map over Lidingö).

30 See Appendix F for viewing the python code for the OSREP algorithm.

Master Thesis Report – The OSREP Implementations

34

Master Thesis Report – Results

35

6. Results

This chapter reveals the results of gathered from the implementation part of this master
thesis project. The results presented here are those of the tpPPC, the test runs, visualization
applications and finally how the OSREP was performing. The latter is a performance result
that will answer the question whether it is possible to create the new generation of
pinpointing using the hardware stated in chapter 3. It is not a performance result that will
show in more depth as to how good the OSREP algorithm is since the task at hand was not to
create the best algorithm in the world for this purpose; it was just to determine if it was a
possibility to create OSREP. But more discussions and conclusions are found in chapter 7.

6.1 Results for the tpPPC application
The result of the tool preparation part is an empirical data acquirement tool (seen in figure
6.1.1) that could be run on a PDA. The tool on the PDA is called “thesis project Pocket PC”
(shortening viewed in the figure as tpPPC). This PDA is as seen in figure 1.1.1 the PDA placed
on the gaming device. This tool makes it possible to see three things while running the
acquirement tool and also it allows doing two things.

Figure 6.1.1: The tpPPC tool on a PDA.

Button state

GPS position update frequency.
Implies data is recorded.

Simple general commands for the
simulation.

Direction data update frequency. Implies
data is recorded.

Master Thesis Report – Results

36

The three things that could be viewed during any run are:

1. The button state. The trigger button on the gaming device, not any of the buttons on
the PDA. It shows the current state and the old state that has been recorded to the
button log file. The reason for this is because the trigger button is not chatter free (i.e.
chatter is contact bounces which would get the effect of switching on/off the button
several times when you’ve actually only pressed it once).

2. The GPS update frequency (with current GPS module the update rate is around 1 Hz).

This implies whether GPS data is received and recorded into the GPS log file or not.

3. The direction data update frequency (with the Microstrain 3DM GX1 module the
current update rate is around 70 Hz). This implies whether direction data is received
and recorded into the gyro log file.

The two things that could be done are:

1. Start a new sequence (i.e. three new log files are created with a new batch number
corresponding to the current batch, batch numbers start at zero).

2. Stop the sequence (i.e. ends the current batch with the batch number created when

starting the sequence).

6.2 Results from the Test Runs
The results from the test runs are stored in ordinary .txt -files called log files since they in fact
consists of recorded (logged) sensor data. This of course results in very large files therefore
only a shortened example of the results is shown here.

One set of recorded button states in one test run (showing one press on the button and one
release of the button, and the second value on each row is the system tick count for the
corresponding button state) is seen in figure 6.2.1:

This is the recorded GPS positions in the same test run:

The different values in figure 6.2.2 are divided by commas and have the following
categorizations:

1. Degrees in minutes and seconds, latitude.
2. Degrees in minutes and seconds, longitude.
3. Course
4. Speed (m/s)
5. High DWORD of FILETIME conversion of the GPS date/time format.
6. Low DWORD of FILETIME conversion of the GPS date/time format.

Figure 6.2.2: The acquired GPS positions.

Figure 6.2.1: The acquired button states.

1,141046
0,144251

5924.288400,-1757.023300,4.077962,0.076033,2408772992,29840848,142027
5924.288400,-1757.023400,4.077962,0.063596,2418772992,29840848,143316
5924.288500,-1757.023500,4.077962,0.067234,2428772992,29840848,143952

Master Thesis Report – Results

37

7. System tick count

The recorded gyro data is seen in table 6.2.3, over the corresponding time span as in figures
6.2.1 and 6.2.2, in the same test run.

The values are divided by commas and the different values have the following categories:
(The modes; 2 = INSTANTANEOUS Mode and 3 = GYRO-STABILIZED Mode is saved as a sign
of which kind of command has been given to the Microstrain sensor module. The modes also
tell which kind of data that is shown in each row of the log file.)

If mode = 2 the following categories apply to the line:

1. Mode = 2
2. INSTANTANEOUS MAGFIELD (x-axis)
3. INSTANTANEOUS MAGFIELD (y-axis)
4. INSTANTANEOUS MAGFIELD (z-axis)
5. INSTANTANEOUS ACCELEROMETER (x-axis)
6. INSTANTANEOUS ACCELEROMETER (y-axis)
7. INSTANTANEOUS ACCELEROMETER (z-axis)
8. INSTANTANEOUS ANGRATE (x-axis)
9. INSTANTANEOUS ANGRATE (y-axis)
10. INSTANTANEOUS ANGRATE (z-axis)
11. Gyro tick count
12. PDA tick count

If mode = 3 the following categories apply to the line:

1. Mode = 3
2. GYRO-STABILIZED MAGFIELD (x-axis)
3. GYRO-STABILIZED MAGFIELD (y-axis)
4. GYRO-STABILIZED MAGFIELD (z-axis)
5. GYRO-STABILIZED ACCELEROMETER (x-axis)
6. GYRO-STABILIZED ACCELEROMETER (y-axis)
7. GYRO-STABILIZED ACCELEROMETER (z-axis)
8. BIAS-COMPENSATED ANGRATE (x-axis)
9. BIAS-COMPENSATED ANGRATE (x-axis)
10. BIAS-COMPENSATED ANGRATE (x-axis)
11. Gyro tick count
12. PDA tick count

6.3 The GISObjectApp visualization application
The result of the development of the GISObjectApp is a not finished application. The desired
functionality is not yet implemented and the extension of the Python module is not finished.

Figure 6.2.3: The acquired gyro data (with two A4-pages of data cut out).

3,0.14661, -0.03741,-0.48151,0.05511,0.01154,0.99762, -0.04695,-0.04410,0.01193,44.754536,141063
2,0.14301, -0.03418,-0.48315,0.04422,0.00705,1.00146, -0.01894,-0.05473,0.05759,44.767643,141077
3,0.14642, -0.03857,-0.48242,0.02969, -0.01260,1.01407, -0.00700,-0.05344,0.06174,44.780750,141089
2,0.14221, -0.03448,-0.48340,0.04572,0.00705,1.00146,0.03813, -0.05240,0.04565,44.793858,141103
3,0.14313, -0.03821,-0.48187,0.04401,-0.02222,1.00681,0.01686, -0.02335,-0.02257,44.813519,141122
…
(Two pages of data have been cut)
…
3,0.14520, -0.03796,-0.48254,0.03802,0.00983,1.01279, -0.01115,0.00934, -0.04669,47.559475,143876
2,0.14288, -0.03656,-0.48297,0.04422,0.00961,1.00104,0.00337, -0.01427,-0.02075,47.572582,143888
3,0.14282, -0.03638,-0.47949,0.04059, -0.00150,1.00403, -0.00934,-0.03502,0.00674,47.598797,143914
2,0.14221, -0.03668,-0.48315,0.04572,0.00983,1.00104,0.01556, -0.04306,0.00259,47.611904,143927
3,0.14471, -0.04028,-0.48370,0.06366, -0.00940,0.98203,0.01997, -0.02464,0.01660,47.625011,143940

Master Thesis Report – Results

38

Although the work done is a good start I think. In figure 6.3.1 the current version of the
GISObjectApp is shown.

Figure 6.3.1: A visual of the GISObjectApp.

S
ta

ck
s

S
im

u
la

ti
on

 a
n
d

O
S
R
E
P

co
n
tr

ol
s

G
ra

ph
 a

re
a

M
ap

 a
re

a

Master Thesis Report – Results

39

6.4 OSREP Results
Since OSREP was divided into two parts, two separate results are presented here. The
graphical visualizations of these results are made with the use of the Python Hack described
in chapter 5.3.3.

6.4.1 Results of the First OSREP Algorithm
The first result is shown in figure 6.4.1.1. It is s a graph over the first OSREP algorithm for
which the purpose was to determine if the player was aiming towards an interesting object.
As seen in the graph the player seems to be holding the device steady between the reference
points of the button state signaling pinpointing and not pinpointing.

Moreover, figure 6.4.1.1 shows the two available modes of AngRate as continuously growing
positively up to about 180 degrees. This insinuates that the player has gone from zero
degree, when he or she started to pinpoint an object. When the player has reached the 180
degrees; it is shown that the gaming device has swiftly moved back to the starting direction.
This implies that the player has stopped aiming and has sat himself comfortably facing
forward in the car’s direction of travel. In this graph the difference between the gathered
instantaneous and stable modes of the Microstrain module is clearly shown. The
instantaneous mode is the bottom line which seems to register a greater leap when the
player moves back to the starting direction. Therefore it s less appealing to use that mode
since it is more logical that the player does act like in the case with the stable mode. I.e. the
player does not go 30 degrees past his starting positions, he would probably much rather
stop when he is facing forward in direction of travel. The dots spaced equally over the whole
graph are when GPS positions have been received while the dashed line presents the current
speed of the car. These two are both received from the GPS Bluetooth device. And the two
other dots mark the button push (signaling that the player started to pinpoint) and button
release (signaling end of pinpointing).

Figure 6.4.1.1: Example of how the variance looks like for the first
algorithm of OSREP. This is from Test run 1 with stable mode of the

Microstrain sensor module.

Master Thesis Report – Results

40

6.4.2 Results of the Second OSREP Algorithm
The second result is more graphs showing the path of the player with the pinpointed object
marked beside it. The graph in figure 6.4.2.1 is the result of the implementation the OSREP
algorithms. The resulting graph could be compared to figure 5.2.1 that showed an example
test run. This figure shows the player path as the connected dots while the POI representing
the pinpointed object is shown alongside the path.

Figure 6.4.1.2: This graph shows that the angle is in fact increasing when the
player is pinpointing an object on the left side. It also shows when comparing to
figure 6.4.1.2 that the angle does vary in time and that the variance gets almost

infinite when the player returns to his starting position.

Master Thesis Report – Results

41

In figure 6.4.2.2 a close-up of the resulting pinpointed object is shown. As seen the
calculated radius is 9.0 meters. This is the difference between the POI with the largest
amount of hit counts and the POI with the second largest amount of hit counts.

If I do the same distance calculation like for figure 5.2.2 the distance B between road and
object becomes B = 94.692 meters. In comparison with the calculated distance B in chapter
5.2 this distance only differs by approximately 10 meters (which is 10% inaccuracy). The
inaccuracy is satisfactory since from this test run, the pinpointed object’s area (shown as the
circle around the pinpointed object) has been calculated to be 9.0 meters. Evidently this
radius is almost equal to the 10% inaccuracy and thereof the distance is as said satisfactory.
But a result of my own belief in that I should do everything myself is that the coordinates are
a bit inaccurate. This is because the transformation presented in Appendix C seems not to be
working correctly although I spent almost two weeks of error correcting and trying out other
projections (e.g. using the 7-parameter transformation also known as Bursa-Wolf 31). But as I

31 This transformation method could be found at Lantmäteriets web-site, here:
http://www.lantmateriet.se/templates/LMV_Page.aspx?id=6054.

Figure 6.4.2.2: Close-up of the pinpointed object and its radius.

Figure 6.4.2.1: Result of how the result looks like for the second OSREP algorithm. The
marked dot is the location of where OSREP thinks the player’s pinpointed object lays.

Master Thesis Report – Results

42

mentioned the GTrans from Lantmäteriet would most definitely fix that problem. Although
this does not present any major coordinate errors. This is due to the fact that the errors are
present in all coordinates in the calculation. The correction of these errors would be applied
to all coordinates like I discussed in chapter 3.1.1 when I described the errors that are
always present in a GPS and how to correct them.

One of the most important things that were shown during the development and testing of the
OSREP algorithms was that it is not necessary for the player to press any buttons or in any
other way hint that he or she is trying to pinpoint an object. Therefore the first OSREP
algorithm is not necessary. This was of course why the first algorithm of the OSREP is a lot
less well-defined in the theory chapter. The figures 6.4.2.3 and 6.4.2.4 shows graphs of one
and the same test run while trying to pinpoint the same object as in figure 5.2.1. But the
graphs in the figures have been processed with two different settings. The difference in
setting in these figures are that the graph in figure 6.4.2.3 is the one with a button state
interval while the one in figure 6.4.2.4 shows the same test run without any button state
interval. A button state interval is explained as when OSREP defines its start and stop from
reading the recorded button log file for signals of that the button had been pushed during a
test run (e.g. it was always pushed to signal that I aimed, and the times for these button
pushes are present in the button log file).

Figure 6.4.2.3: OSREP with a finite button state interval and offset
angle set to 30 degrees.

Master Thesis Report – Results

43

The calculation of the offset angle was quite satisfactory. As in the figures above the offset
angle was computed to 30 degrees. That the offset angle was computed to be 30 degrees
means that the starting direction was 30 degrees since this result in an x- and y-coordinate
with the smallest object-tolerance (i.e. the object size was the smallest) present in the test
run that these results come from.

Figure 6.4.2.4: OSREP without a finite button state interval.

Master Thesis Report – Results

44

Master Thesis Report – Discussing and Concluding the Results

45

7. Discussing and Concluding the Results

Chapter 7 presents the discussions and conclusions about the results presented in chapter 6.
In the following sub-chapters several discussions are made and in the final sub-chapter the
conclusions as to whether there is a possibility to create sufficiently good OSREP algorithms
making it possible to develop tools in BSP for future User Content Creation.

7.1 The Applications

7.1.1 The tpPPC
The usability of the tool is in general good. It provides the user with the basic information
during test runs. It provides an easy to use Graphical User Interface (GUI) with only two
buttons and some text visualizations providing update rates and button state. This could of
course have been more complex, providing sliders for changing these update rates. But when
designing this tool and viewing the requirements for it there were no need of such
complexity. However because of the fact that the GPS module uses Bluetooth there was a
rather annoying fact that occurred. Every time a new recording was to be started I had to
manually choose the GPS module to be connected. So in the future try to fix this.

To design the tool in this way does not however limit further development of it. Since the
design provides only for the basic functionality it is actually offering more flexibility. If there
are specific needs, those could easily be added to the existing code creating a more powerful
tool.

The textual output files earlier described as log files are easy manageable files containing the
most significant data needed for further processing. The choice of creating three different
files for button-, GPS- and gyro data was a success since it required minimal effort of
searching for a certain sensor output. Meanwhile it also makes it possible to add further
sensor output by explicitly writing code for it and recording its data to another file.

7.1.2 The GISObjectApp
Not much to say beside the fact that I am disappointed that I did not find the time to finish
this application. It would have been a nice demonstrational tool when presenting the master
thesis project. If another student is to continue my work he or she could perhaps find this
useful for visualizing objects that should be presented on a map using the MapInfo MapX 5.0
software.

7.1.3 The Python Hack
Although this is a hack it turned out to be very useful. The hack was actually used as the tool
for developing OSREP. It was used as a proof of concept which means that this hack not only
is a visualization tool it actually has the OSREP integrated in itself. Or at least that is how it
was delivered to the Mobility Studio at Interactive Institute. This was not the way I intended
it to be but it seemed to be the only way to present the results when the presentation

Master Thesis Report – Discussing and Concluding the Results

46

deadline was approaching. Neither had I thought that the usability of the Python hack would
be anything to talk about, which it was not. But as late as in the last couple of days before
presentation some breakthroughs regarding OSREP algorithms were made and thereof it was
again interesting to present some GUI that allows the user to change settings in a more
presentable way than viewing and editing code.

7.2 Are the OSREP Algorithms Sufficiently Good?
Measuring the validity of the OSREP algorithms is to compare the processed test run data
with the notes I took from when I conducted the test runs. These notes reveal that OSREP
outputs an adequately good result. It works to the degree that it retrieves a Point-Of-
Intersection with quite satisfactory distance between the player path and the pinpointed
object (an inaccuracy of 10%). Although comparing that result to the inaccuracy of a GPS it
is very satisfactory. Moreover, the position of the pinpointed object is a satisfactory result
when comparing it to maps. But since I’m using my own coordinate projection it would be
good to change this in the future. My comparisons with maps are made by adding a false
northing and false easting of 140885.5 and 5765 meters respectively. But due to the
customizations of FN and FE I would like to make the future developers aware of this.

Discussing the absence of the first OSREP algorithm while testing the complete OSREP
algorithm I argue that it is not necessary to implement it. It is clearly sufficient to only
implement the second algorithm. The main reason for this result is by my understanding the
fact that the second algorithm calculates all POIs present between all GPS positions within a
time frame set by the developer. A problem or in detail a matter of implementation would be
to slide that interval as the player travels trough the road network making it work like a
sliding window. This I believe will not offer any further complexity since it is only to
implement an exclusion of sufficiently old GPS positions. This solution would be sufficient
since the last GPS position in the sliding window would be the last recorded GPS position.
Although this introduces a time constraint on the time performance of the OSREP it will
mostly be a question of optimizing the code and optimization of the different parameters
present in the Python code for the OSREP algorithm. By testing the OSREP I have clearly
seen the lack of performance in the algorithm when regarding the response time for it. It
takes quite a long time to process all directional data along with the GPS positions. This
offers a long delay from when the player has stopped pinpointing the object which could be
quite distracting. But if the BSP developers would like to they can put some effort into
presenting this delay as useful. E.g. while computations are made a voice is presenting
information like “We are now processing your information. Play this side mission to earn more
points in the game while waiting for the results”.

What has proven to be the greatest factors of lack in performance is the O in figure 4.3.1.1
which is the angle that controls how wide the GPS position interval could possibly get.
Another very annoying fact is the step length of x in the pseudo-code in figure 4.3.1.9. In the
ideal case I would want to take steps of length (speed of the car)*(update frequency of the
Microstrain sensor module equal to 1/35 second) which results in steps of approximately
0.3968 meters. But to do so I would have to need a monster computer. The PDA used in the
BSP prototype is for certain not a monster computer. Why I would like the x to be able to
take small steps is because it determines the x-coordinate of the pinpointed object (the result
of this factor is as seen in Appendix D that the x-coordinate is an integer).

7.3 Lessons learned
Firstly the main thing I learned is to be very precise when delimitating a project. Not doing so
in a sufficiently good way turned out to be a heavy load. It puts very much stress into to the
final touches that has to be made. Mainly some of the areas in the report have suffered from
it. This could have been avoided if I had kept a very detailed diary to keep track of when a

Master Thesis Report – Discussing and Concluding the Results

47

new stage was begun and what I did during that stage. Secondly I have realized the
importance of planning and in greater detail investigate how time consuming the different
stages in the project could be.

Understanding code and the importance of documenting code has been very educational. Not
saying that I’m a master at documenting code but that I will from now on always put some
nice comments beside an important part of code. Specifically this holds for a thesis like this
when the reader could be some other master student continuing the work. Hopefully my
approximately 10 000 lines of code is more well-documented and understandable.

But what I was very surprised about was the time it took to start up the project. I remember
I was thinking that I was never going to get started but finally I did. This could have been
avoided if Uppsala University would hold a project methodology course before the master
thesis project. This would allow for the students to feel more confident when initiating a
bigger project compared to the ordinary 5 point courses they go through.

7.4 Future Work
Using this kind of gaming device in a mobile AR game is doomed in advance. First of all the
Microstrain sensor module costs about 15 000 Swedish crowns which imply that to buy the
game you have to be quite rich. If you add the fact that a parallel master thesis is
investigating how to find out directions using the camera of a mobile phone the hardware
used in this master thesis could be thrown away if that is a success. Although the conceptual
ideas of the OSREP that I have come up with could of course be applied to that platform
instead. This would show if OSREP could be more applicable to that kind of pinpointing
hardware and thereby prove to be of some use after all.

By further developing the Python hack I think there is a lot more to be found. To come up
with more ways to weigh the POIs I believe a key point. Moreover I think there has to be
some work done to the part in the code where I distinguish the travel direction to discard
non-valid POI.

Another thing that the future developer would have to change is my own projection method
to the one provided for in GTrans32. This tool is available for Python coding through extending
a Python module with C++. This will increase the accuracy in the x- and y-coordinates for the
GPS input to the OSREP algorithm.

32 Information about GTrans is found at Lantmäteriets web-site, here:
http://www.lantmateriet.se/templates/LMV_Page.aspx?id=1564.

Master Thesis Report – Discussing and Concluding the Results

48

Master Thesis Report – Acknowledgements

49

8. Acknowledgements

First I would like to thank Anton Gustafsson for taking me under his wings and for the very
precise expertise and constructive feedback in several areas of this master thesis project.
Along with him I would also like to thank Oskar Juhlin for valuable and constructive feedback
during the progress meetings and halfway presentation. Also I would like to thank the whole
team at Interactive Institute’s Mobility Studio for their kind support and for being nice team
members.

I also would like to thank Tasawar Khan who drove me during one test run. Thank you for
your patience. Beside him I would like to thank every other master student who I have talked
and discussed various matters with. It was nice to have met you all and nice of you to have
shared some of your knowledge with me.

Master Thesis Report – Acknowledgements

50

Master Thesis Report – References

51

9. References

Here you see all the references I have used for this master thesis project, they are
categorized by which type of media they belong to (i.e. the categories are Internet, Literature
and Publications).

9.1 Internet
A Literature Review on Reaction Time by Robert J. Kosinski. (2006).
Available: http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm
Accessed: March 30, 2007.

ActivePython 2.4 Documentation. (2006).
Available: http://aspn.activestate.com/ASPN/docs/ActivePython/2.4/python/ext/ext.html
Accessed: April 12, 2007.

GIS.com – What is GIS? (2007).
Available: http://www.gis.com/whatisgis/index.html
Accessed: March 28, 2007.

GPS Errors & Estimating Your Receiver's Accuracy. (2007).
Available: http://edu-observatory.org/gps/gps_accuracy.html
Accessed: March 27, 2007.

Hacking GPS homepage. (2006).
Available: http://www.hacking-gps.com/articles.php?url=2&id=200503281930
Accessed: March 27, 2007.

How a gyroscope works by Terry Pearson. (1999).
Available: http://www.gyroscopes.org/how.asp.
Accessed: March 27, 2007.

How gyroscopes work by Marshall Brain. (2007).
Available: http://www.howstuffworks.com/gyroscope.htm
Accessed: March 27, 2007.

Kowoma-GPS homepage. (2002-2005).
Available: http://www.kowoma.de/en/gps/
Accessed: March 27, 2007.

Lantmäteriet. (2007).
Available: http://www.lantmateriet.se
Accessed: April 11, 2007.

Matplotlib module. (2007).
Available: http://matplotlib.sourceforge.net
Accessed: March 28, 2007.

Master Thesis Report – References

52

Microsoft Visual Studio 2005. (2007).
Available: http://msdn2.microsoft.com/sv-se/vstudio/default.aspx
Accessed: March 28, 2007.

Microstrain, Inc. (2006).
3DM-G communications protocol for Firmware 2.1.00 rev3.01. pp. 7.
Available: http://www.microstrain.com/manuals/3DM-
G%20communications%20protocol%20for%20Firmware%202.1.00%20rev3.01.pdf
Accessed: March 27, 2007.

Nintendo homepage, overview section of the Nintendo Wii. (2007).
Available: http://www.nintendo.com/overviewwii
Accessed: March 27, 2007.

Numpy module. (2007).
Available: http://www.scipy.org/NumPy
Accessed: March 28, 2007.

The Python Programming Language. (2006).
Available: http://www.python.org
Accessed: March 28, 2007

The Swedish Road Administration. (2004).
Creating lines for roads.
Available: http://www.vv.se/templates/page3____8165.aspx
Accessed: March 29, 2007.

9.2 Literature
Ghezzi, C., Jazayeri, M. and Mandrioli, D. (1991).
Fundamentals of Software Engineering.
Prentice-Hall International, Inc.

Heath, Michael T. (2002).
Scientific Computing: An Introductory Survey, Second Edition.
The McGraw-Hill Companies, Inc.

Råde, L. and Westergren, B. (1998).
Mathematics Handbook for Science and Engineering.
Studentlitteratur, Lund.

Tengstrand, Anders. (2005).
Åtta kapitel om geometri.
Studentlitteratur, Lund.

Yates, Roy D. and Goodman, David J. (2005).
Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer
Engineers, Second Edition.
John Wiley & Sons, Inc.

9.3 Publications
Barkhuus, L., Chalmers, M., Tennent, P., Hall, M., Marek Bell, M., Sherwood, S., and
Brown, B. (2005).
Picking Pockets on the Lawn: The Development of Tactics and Strategies in a Mobile Game.

Master Thesis Report – References

53

In Proceedings Ubicomp’05 - The Seventh International Conference on Ubiquitous Computing,
Tokyo, LNCS 3660. pp 358-374.

Bichard, J., Brunnberg, L., Combetto, M., Gustafsson, A. and Juhlin, O. (2006).
Backseat Playgrounds: Pervasive Storytelling in Vast Location Based Games.
In Proceedings of the 5th International Conference on Entertainment Computing - ICEC 2006.
Springer Verlag, pp. 117-122.
Available: http://www.tii.se/mobility/Files/BSPshort_OJ_060414.pdf
Accessed: March 27, 2007.

Brunnberg, L. and Hulterström, K. (2003).
Designing for physical interaction and contingent encounters in a mobile gaming situation.
Presented at the workshop on real world user interfaces, at MobileHCI'2003.
Available: http://www.tii.se/mobility/Files/BackseatGaming_mobileHCI.pdf
Accessed: April 12, 2007.

Brunnberg, L. and Juhlin, O. (2006).
Keep your eyes on the road and your finger on the trigger - Designing for mixed focus of
attention in a mobile game for brief encounters.
In Proceedings of the 4th International Conference on Pervasive Computing. Springer Verlag,
pp. 169-186.
Available: http://www.tii.se/mobility/Files/RoadRager_FINAL_060120.pdf
Accessed: March 27, 2007.

Brunnberg, L. and Juhlin, O. (2003).
Movement and Spatiality in a Gaming Situation - Boosting Mobile Computer Games with the
Highway Experience.
In Proceedings of Interact'2003 - IFIP TC 13 International Conference on Human-Computer
Interaction. IOS Press, pp 407-414.
Available: http://www.tii.se/mobility/Files/BSGFinal.pdf
Accessed: March 27, 2007.

Gustafsson, A., Bichard, J., Brunnberg, L., Juhlin, O. and Combetto, M. (2006).
Believable environments – Generating interactive storytelling in vast location based pervasive
games.
In Proceedings of SIGCHI Advances in Computer Entertainment 2006. ACM Press. CD-ROM.
Available: http://www.tii.se/mobility/Files/BelievableEnvironment_060421.pdf
Accessed: March 27, 2007.

Master Thesis Report – References

54

Master Thesis Report – Appendices

55

10. Appendices

Here you find appendices, short information that could feel superfluous in the ordinary text in
the report.

10.1 Appendix A – Calculating a sector of a circle
The formula for such a calculation (where the circle sector = s):

s * radiusβ= (Formula 10.1.1)

A schematic figure (figure 10.1.2) over how the variables correspond to the circle geometry.

radius radius ß

s

Figure 10.1.2: The variables used showed in a circle.

Master Thesis Report – Appendices

56

10.2 Appendix B – Maximum valid AngRates
To get the maximum valid AngRates of the Microstrain sensor module the following
calculations has been made by using the situation in figure 10.2.1 and the result is found in
the graphs in figure 10.2.4.

This figure gives the following relations:

11 1
1 1 2 2

1

cos cos
s s
A B s

α α −
 
 = ⇔ =
 + 

 (Formula 10.2.2)

By stating the fact b=B and assuming that a constant speed is kept, the distance s1 becomes
s1 = (1/35)*v since the angles are taken with 1/35 of second apart as stated earlier.
Therefore s1 = (1/35)*v, where v = velocity of the car. This gives formula 10.2.3:

1

2
2 1

1
135

cos
351

35

n

n

i
i

v

B v

AngRateα−

=

        ⇒ = =     
   +     

∑ (Formula 10.2.3)

For the most common speed limits in Sweden the results become as shown in figure 10.2.4
with the distance between road and object as the x-axis.

Object

s1

Road

A

B

a1

Direction
of travel v

Figure 10.2.1: Explanatory image of the variables used when calculating
maximum AngRate.

Master Thesis Report – Appendices

57

From these results it could be said that the maximum AngRate is most definitely dependent
on where the object is situated and at which speed the player is traveling.

Figure 10.2.4: Resulting graphs showing the maximum AngRate at five
different speeds (the lines show from top down the result for the speeds: 110,

90, 70, 50 and 30 km/h).

Master Thesis Report – Appendices

58

10.3 Appendix C – GPS Coordinate Transformation
To transform the GPS coordinates from WGS84 format (which is equivalent to SWEREF99;
they only differ by a couple of decimeters) to RT90 format I am using the direct projection
with the Gauss-Krüger formulas33. In Python this looks something like this:

import math
import cmath
from pylab import *
from Matrix import *
from scipy import *
from numpy import *

#Function for conversion from WGS84 (used in the GPS module in this project, is used with longitud and latitud)
to RT90 (used in sweden, is metric)

def convertWGS84toRT90(lat, lon):

#constants for the Gauss-Kruger Conformal Projection in RT90 2.5 gon V0:-15
a = 6377397.155 #Half great axis
f = 1.0/299.1528128 #Flattening
n = f/(2.0-f)
longi_of_central_meridian = convertDegree(1548.22624306) #lambda0
scale_on_central_meridian = float(1.00000561024) #k0
FN = float(-667.711) #False Northing
FE = float(1500064.274) #False Easting
a_ceiling = (a/(1.0+n))*(1.0+(1.0/4.0)*pow(n,2)+(1.0/64.0)*pow(n,4))

A = pow(e,2)
B = (1.0/6.0)*((5.0)*pow(e,4)-pow(e,6))
C = (1.0/120.0)*((104.0)*pow(e,6)-(45.0)*pow(e,8))
D = (1.0/1260.0)*((1237.0)*pow(e,8))

conformal_latitude = lat-convertDegree(sin(radians(lat))*cos(lat)*(

A+B*pow(sin(radians(lat)),2)+C*pow(sin(radians(lat)),4)+D*pow(sin(radians(lat)),6)))

sigma_longitude = lon-longi_of_central_meridian
xi_prim = atan(tan(radians(conformal_latitude))/cos(radians(sigma_longitude)))
eta_prim = real(cmath.atanh(cos(radians(conformal_latitude))*sin(radians(sigma_longitude))))

beta1 = 0.5*n-(2.0/3.0)*pow(n,2)+(5.0/16.0)*pow(n,3)+(41.0/180.0)*pow(n,4)
beta2 = (13.0/48.0)*pow(n,2)-(3.0/5.0)*pow(n,3)+(557.0/1440.0)*pow(n,4)
beta3 = (61.0/240.0)*pow(n,3)-(103.0/140.0)*pow(n,4)
beta4 = (49561.0/161280.0)*pow(n,4)

RT90_x = scale_on_central_meridian * a_ceiling * (xi_prim + beta1*sin(2.0*xi_prim)*cosh(2.0*eta_prim) +

 beta2*sin(4.0*xi_prim)*cosh(4.0*eta_prim) + beta3*sin(6.0*xi_prim)*cosh(6.0*eta_prim) +
beta4*sin(8.0*xi_prim)*cosh(8.0*eta_prim)) + FN

RT90_y = scale_on_central_meridian * a_ceiling * (eta_prim + beta1*cos(2.0*xi_prim)*sinh(2.0*eta_prim)
+ beta2*cos(4.0*xi_prim)*sinh(4.0*eta_prim) + beta3*cos(6.0*xi_prim)*sinh(6.0*eta_prim) +
beta4*cos(8.0*xi_prim)*sinh(8.0*eta_prim)) + FE

RT90_xy = matrix([[RT90_x],[RT90_y]])

33 The Gauss Conformal Projection (also known as the Krüger-formulas or Transverser
Mercator) are found at:
http://www.lantmateriet.se/upload/filer/kartor/geodesi_gps_och_detaljmatning/geodesi/For
melsaml%EDng/Gauss_Conformal_Projection.pdf.

Figure 10.3.1: Python code for transforming GPS positions in WGS84 format to
RT90 format (which is better suited for Sweden).

Master Thesis Report – Appendices

59

10.4 Appendix D – The OSREP Testing Feedback
Here I show the resulting feedback (in figures 10.4.1 and 10.4.2) from running tests with the
OSREP algorithm applied to direction data. This feedback corresponds to the graphs 6.4.2.3
and 6.4.2.4.

Start Time for test is: 14:50:27 04/18/07 W. Europe Standard Time###

Trying to OSREP fileNR: 1, with offset: 30.0

Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 290 and current number of POIs are: 96
Number of valid angles: 364 and current number of POIs are: 229
Number of valid angles: 235 and current number of POIs are: 349
Number of valid angles: 171 and current number of POIs are: 440
Number of valid angles: 256 and current number of POIs are: 628
Number of valid angles: 233 and current number of POIs are: 790
Number of valid angles: 317 and current number of POIs are: 1087
Number of valid angles: 364 and current number of POIs are: 1523
Number of v alid angles: 216 and current number of POIs are: 1875
Number of valid angles: 302 and current number of POIs are: 2338
Number of valid angles: 189 and current number of POIs are: 2709
Number of valid angles: 268 and current number of POIs are: 3495
Number of valid angles: 257 and current number of POIs are: 4449

The total number of valid angles are: 3462 and the total number of POIs are: 4449
while traveling WEST and the object is on the LEFT side of the car.
Weighing the set of POIs gathered...
The amount of POIs have been reduced to 2 valid POIs.

Distance B Between the Pinpointed Object and the Road is: 94.6916128411

Finished OSREPing fileNR: 1 with offset: 30.0.

Plotting OSREP Results for Test Run Nr: 1...

Finished Plotting OSREP for Test Run Nr:1

The OSREP Coordinates of the Pinpointed Object are: (x , y) = (6588654 , 1651275.27958)

Calulated Radius of the Pinpointed Object: 9.0

Finished OSREPing log file Nr: 1 in 90.5299999714 seconds.

Figure 10.4.1: Code Feedback: Without Button State Interval.

Master Thesis Report – Appendices

60

Start Time for test is: 14:55:05 04/18/07 W. Europe Standard Time###

Trying to OSREP fileNR: 1, with offset: 30.0

Using BS interval...
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 0 and current number of POIs are: 0
Number of valid angles: 290 and current number of POIs are: 96
Number of valid angles: 364 and current number of POIs are: 229
Number of valid angles: 235 and current number of POIs are: 349
Number of valid angles: 171 and current number of POIs are: 440
Number of valid angles: 256 and current number of POIs are: 628
Number of valid angles: 233 and current number of POIs are: 790
Number of valid angles: 317 and current number of POIs are: 1087
Number of valid angles: 364 and current number of POIs are: 1523
Number of valid angles: 216 and current number of POIs are: 1875
Number of valid angles: 302 and current number of POIs are: 2338
Number of valid angles: 189 and current number of POIs are: 2709
Number of valid angles: 268 and current number of POIs are: 3495
Number of valid angles: 257 and current number of POIs are: 4449

The total number of valid angles are: 3462 and the total number of POIs are: 4449
while traveling WEST and the object is on the LEFT side of the car.
Weighing the set of POIs gathered...
The amount of POIs have been reduced to 2 valid POIs.

Distance B Between the Pinpointed Object and the Road is: 94.6916128411

Finished OSREPing fileNR: 1 with offset: 30.0.

Plotting OSREP Results for Test Run Nr: 1...

Finished Plotting OSREP for Test Run Nr:1

The OSREP Coordinates of the Pinpointed Object are: (x , y) = (6588654 , 1651275.27958)

Calulated Radius of the Pinpointed Object: 9.0

Finished OSREPing log file Nr: 1 in 96.4789998531 seconds.

Figure 10.4.2: Code Feedback: With Button State Interval.

Master Thesis Report – Appendices

61

10.5 Appendix E – The Test Run Notes
These are the notes taken from the last test run, shown in table 10.5.1. They are present in
this report since I have referred to them so many times I feel compelled to do so. Test Nr 1,
8 and 11 was the attempt to pinpoint the coordinate showed in figure 5.2.1

Test
Nr:

Side of the
road where
the object

laid.
(Left/Right)

Estimated distance
(Close 0-50,

Average 50-150,
Far 150-200 meters)

Object
Travel

direction

0
Right Close Transformer

housing.
North

1 Left Average Gate posts. West

2
Left Average White house on

little hill.
West

3
Left Close- Average White house by the

dog field.
West

4
Left Average Yellow house,

aimed while going
through a curve.

West

5

Right Average White house, free
from any other
obstacles or
objects.

East

6
Right Average Red house, the one

closest to the field.
East

7
Right Far-Far Away Chimney (marked

as “torn” in the GIS
data).

East

8 Right Average Gate posts. East

9
Left Close Transformer

housing.
South

10
Right Close Transformer

housing.
North

11 Left Average Gate posts. West

12
Right Close Yellow house. North-

West
13 Left Average House. West

14
Left Average Red barn, free

standing by a field.
West

Table 10.5.1: Notes taken during 15 test runs at Lidingö.

Master Thesis Report – Appendices

62

10.6 Appendix F – Code for the second OSREP Algorithm
In figure 10.6.1, here below, I present the python code for the second OSREP algorithm.

#--
The OSREP Algorithm:
#--

def applyOSREPalgorithm(gps_x_list, gps_y_list, gps_time_list, gps_speed_list, dir_angRatez_list, dir_time_list, offset,
object_size_tolerance, line_of_sight_distance, bs_list, bs_time_list, BS_interval_indicator, verbose_mode):
 #OSREP init
 break_status = False
 POI_x_list = []
 POI_y_list = []
 POI_list = [[],[]]
 POO_dir1_list = [[],[]]
 POO_dir2_list = [[],[]]
 theta1_init = offset
 theta2_init = offset
 theta1_sum = float(0.0)
 theta2_sum = float(0.0)
 delta_theta_sum = float(0.0)
 poi_counter = 0
 travel_westing = 0
 travel_northing = 0
 total_amount_of_angle = 0

 #Check the button state interval
 if BS_interval_indicator == int(1):
 start = gps_time_list[0]
 end = gps_time_list[len(gps_time_list)-1]
 found_start = False
 found_end = False
 for p in range(0,len(bs_list)):
 if bs_list[p] == int(1) and found_start == False:
 BS_START = bs_list[p]
 for time in range(gps_time_list[0],gps_time_list[len(gps_time_list)-1]):
 if (BS_START-time)<=int(1000) and (BS_START-time)>=int(400):
 start = gps_time_list[gps_time_list.index(BS_START)]
 found_start = True
 if bs_list[p] == int(0) and found_end == False:
 BS_END = bs_list[p]
 for time in range(gps_time_list[0],gps_time_list[len(gps_time_list)-1]):
 if (BS_END-time)<=int(1000) and (BS_END-time)>=int(400):
 end = gps_time_list[gps_time_list.index(BS_END)]
 found_end = True
 if found_start == True and found_end == True:
 if verbose_mode == True:
 print 'Using BS interval...'

 #Selecting two pairs of GPS positions
 for n in range(1, len(gps_time_list),1):
 angle_counter = 0
 #GPS position pair 1
 gps1_x = gps_x_list[n-1]
 gps1_y = gps_y_list[n-1]
 gps1_timestamp = gps_time_list[n-1]
 gps1_speed = gps_speed_list[n-1]
 gps2_x = gps_x_list[n]
 gps2_y = gps_y_list[n]
 gps2_timestamp = gps_time_list[n]
 gps2_speed = gps_speed_list[n]
 #GPS position pair 2
 gps3_x = gps_x_list[len(gps_time_list)-n-1]
 gps3_y = gps_y_list[len(gps_time_list)-n-1]
 gps3_timestamp = gps_time_list[len(gps_time_list)-n-1]
 gps3_speed = gps_speed_list[len(gps_time_list)-n-1]
 gps4_x = gps_x_list[len(gps_time_list)-n]
 gps4_y = gps_y_list[len(gps_time_list)-n]
 gps4_timestamp = gps_time_list[len(gps_time_list)-n]
 gps4_speed = gps_speed_list[len(gps_time_list)-n]

Master Thesis Report – Appendices

63

 #Calculate direction of travel
 if gps1_x < gps4_x:
 travel_westing = -1 #going east
 else:
 travel_westing = 1 #going west
 if gps 1_y < gps4_y:
 travel_northing = -1 #going south
 else:
 travel_northing = 1 #going north

 #Calculate valid time interval between GPS position 1 and 4, in milliseconds
 valid_time_interval = 2.0*(line_of_sight_distance/((gps1_speed+gps4_speed)/2.0))*1000.0
 if (gps4_timestamp-gps1_timestamp) <= valid_time_interval:
 if BS_interval_indicator == int(1):
 if found_start == True and found_end == True:
 if gps1_timestamp >= start and gps4_timestamp <= end:
 #Distances between GPS positions within the pairs
 ls1 = sqrt(pow((gps1_x -gps2_x),2)+pow((gps1_y-gps2_y),2))
 ls2 = sqrt(pow((gps3_x -gps4_x),2)+pow((gps3_y-gps4_y),2))

 #Select directions
 dir1_angRatez_list = []
 dir1_time_list = []
 dir2_angRatez_list = []
 dir2_time_list = []

 for i in range(0,len(dir_angRatez_list)):
 #Select the directions which lays in between GPS positions 1 and 2. (I.e. the directions in a time interval)
 if dir_time_list[i] >= gps1_timestamp and dir_time_list[i] <= gps2_timestamp:
 dir1_angRatez_list.append(dir_angRatez_list[i])
 dir1_time_list.append(dir_time_list[i])
 #Select the directions which lays in between GPS positions 3 and 4. (I.e. the directions in a time interval)
 if dir_time_list[i] >= gps3_timestamp and dir_time_list[i] <= gps4_timestamp:
 dir2_angRatez_list.append(dir_angRatez_list[i])
 dir2_time_list.append(dir_time_list[i])

 theta1 = theta1_init
 theta2 = theta2_init
 for k in range(1,len(dir1_time_list)-1):
 #Direction Angles modulus 360 degrees
 theta1 = fmod(theta1 + (dir1_angRatez_list[k] * 180.0/pi) * (dir1_time_list[k] - dir1_time_list[k-1]), 360.0)
 theta1_sum = fabs(theta1_sum + fmod((dir1_angRatez_list[k] * 180.0/pi) * (dir1_time_list[k] - dir1_time_list[k-1]), 360.0))

 #Direction's progress between GPS positions 1 and 2
 dir1_ratio = (dir1_time_list[k]-gps1_timestamp)/(gps2_timestamp-gps1_timestamp)

 #Point-Of-Origin of the direction
 s1 = ls1-dir1_ratio*ls1
 (POO_dir1_x, POO_dir1_y) = ((((dir1_ratio * ls1)*gps2_x + s1*gps1_x)/(dir1_ratio + s1)), (((dir1_ratio * ls1)*gps2_y +
s1*gps1_y)/(dir1_ratio + s1)))

 for l in range(1,len(dir2_time_list)-1):
 #Direction Angles modulus 360 degrees
 theta2 = fmod(theta2 + (dir2_angRatez_list[l] * 180.0/pi) * (dir2_time_list[l] - dir2_time_list[l-1]), 360.0)
 theta2_sum = fabs(theta2_sum + fmod((dir2_angRatez_list[l] * 180.0/pi) * (dir2_time_list[l] - dir2_time_list[l-1]),
360.0))/l

 if ((180-theta2)+theta1)<=float(170.0) and ((180-theta2)+theta1)>=float(2.0):
 angle_counter = angle_counter + 1
 #Direction's progress between GPS positions 3 and 4
 dir2_ratio = (dir2_time_list[l]-gps3_timestamp)/(gps4_timestamp-gps3_timestamp)

 #Point-Of-Origin of the direction
 s2 = ls2-dir2_ratio*ls2
 (POO_dir2_x, POO_dir2_y) = ((((dir2_ratio * ls2)*gps4_x + s2*gps3_x)/(dir2_ratio + s2)), (((dir2_ratio * ls2)*gps4_y
+ s2*gps3_y)/(dir2_ratio + s2)))

 if POO_dir1_x > POO_dir2_x:
 poo_x_max = POO_dir1_x + line_of_sight_distance
 poo_x_min = POO_dir2_x - line_of_sight_distance
 else:
 poo_x_max = POO_dir2_x + line_of_sight_distance
 poo_x_min = POO_dir1_x - line_of_sight_distance

Master Thesis Report – Appendices

64

 #Calculate Point-Of-Intersections
 x = float(poo_x_min)
 while x >= poo_x_min and x <= poo_x_max:
 y1 = x*tan(theta1) + POO_dir1_y - POO_dir1_x*tan(theta1)
 y2 = x*tan(theta2) + POO_dir2_y - POO_dir2_x*tan(theta2)

 if y1 <= (y2+object_size_tolerance) and y1 >= (y2-object_size_tolerance):
 if (checkPOIdistanceToPOOs(x, y1, POO_dir1_x, POO_dir1_y, POO_dir2_x, POO_dir2_y,
line_of_sight_distance) == True) and (checkPOIdistanceToPOOs(x, y2, POO_dir1_x, POO_dir1_y, POO_dir2_x, POO_dir2_y,
line_of_sight_distance) == True):
 POI_list[0].append(x)
 POI_list[1].append(y1)
 POO_dir1_list[0].append(POO_dir1_x)
 POO_dir1_list[1].append(POO_dir1_y)
 POO_dir2_list[0].append(POO_dir2_x)
 POO_dir2_list[1].append(POO_dir2_y)
 poi_counter = poi_counter + 1
 x = x + 0.5
 delta_theta_sum = theta1_sum/k - theta2_sum
 elif BS_interval_indicator == int(0):
 #Distances between GPS positions within the pairs
 ls1 = sqrt(pow((gps1_x-gps2_x),2)+pow((gps1_y -gps2_y),2))
 ls2 = sqrt(pow((gps3_x-gps4_x),2)+pow((gps3_y -gps4_y),2))

 #Select directions
 dir1_angRatez_list = []
 dir1_time_list = []
 dir2_angRatez_list = []
 dir2_time_list = []

 for i in range(0,len(dir_angRatez_list)):
 #Select the directions which lays in between GPS positions 1 and 2. (I.e. the directions in a time interval)
 if dir_time_list[i] >= gps1_timestamp and dir_time_list[i] <= gps2_timestamp:
 dir1_angRatez_list.append(dir_angRatez_list[i])
 dir1_time_list.append(dir_time_list[i])
 #Select the directions which lays in between GPS positions 3 and 4. (I.e. the directions in a time interval)
 if dir_time_list[i] >= gps3_timestamp and dir_time_list[i] <= gps4_timestamp:
 dir2_angRatez_list.append(dir_angRatez_list[i])
 dir2_time_list.append(dir_time_list[i])

 theta1 = theta1_init
 theta2 = theta2_init
 for k in range(1,len(dir1_time_list)-1):
 #Direction Angles modulus 360 degrees
 theta1 = fmod(theta1 + (dir1_angRatez_list[k] * 180.0/pi) * (dir1_time_list[k] - dir1_time_list[k-1]), 360.0)
 theta1_sum = fabs(theta1_sum + fmod((dir1_angRatez_list[k] * 180.0/pi) * (dir1_time_list[k] - dir1_time_list[k-1]), 360.0))

 #Direction's progress between GPS positions 1 and 2
 dir1_ratio = (dir1_time_list[k]-gps1_timestamp)/(gps2_timestamp-gps1_timestamp)

 #Point-Of-Origin of the direction
 s1 = ls1-dir1_ratio*ls1
 (POO_dir1_x, POO_dir1_y) = ((((dir1_ratio * ls1)*gps2_x + s1*gps1_x)/(dir1_ratio + s1)), (((dir1_ratio * ls1)*gps2_y +
s1*gps1_y)/(dir1_ratio + s1)))

 for l in range(1,len(dir2_time_list)-1):
 #Direction Angles modulus 360 degrees
 theta2 = fmod(theta2 + (dir2_angRatez_list[l] * 180.0/pi) * (dir2_time_list[l] - dir2_time_list[l-1]), 360.0)
 theta2_sum = fabs(theta2_sum + fmod((dir2_angRatez_list[l] * 180.0/pi) * (dir2_time_list[l] - dir2_time_list[l-1]), 360.0))/l

 if ((180-theta2)+theta1)<=float(170.0) and ((180-theta2)+theta1)>=float(2.0):
 angle_counter = angle_counter + 1
 #Direction's progress between GPS positions 3 and 4
 dir2_ratio = (dir2_time_list[l]-gps3_timestamp)/(gps4_timestamp-gps3_timestamp)

 #Point-Of-Origin of the direction
 s2 = ls2-dir2_ratio*ls2
 (POO_dir2_x, POO_dir2_y) = ((((dir2_ratio * ls2)*gps4_x + s2*gps3_x)/(dir2_ratio + s2)), (((dir2_ratio * ls2)*gps4_y +
s2*gps3_y)/(dir2_ratio + s2)))

 if POO_dir1_x > POO_dir2_x:
 poo_x_max = int(POO_dir1_x + line_of_sight_distance)
 poo_x_min = int(POO_dir2_x - line_of_sight_distance)

Master Thesis Report – Appendices

65

 else:
 poo_x_max = int(POO_dir2_x + line_of_sight_distance)
 poo_x_min = int(POO_dir1_x - line_of_sight_distance)

 #Calculate Point-Of-Intersections
 x = float(poo_x_min)
 while x >= poo_x_min and x <= poo_x_max:
 y1 = x*tan(theta1) + POO_dir1_y - POO_dir1_x*tan(theta1)
 y2 = x*tan(theta2) + POO_dir2_y - POO_dir2_x*tan(theta2)

 if y1 < (y2+object_size_tolerance) and y1 > (y2-object_size_tolerance):
 if (checkPOIdistanceToPOOs(x, y1, POO_dir1_x, POO_dir1_y, POO_dir2_x, POO_dir2_y, line_of_sight_distance)
== True) and (checkPOIdistanceToPOOs(x, y2, POO_dir1_x, POO_dir1_y, POO_dir2_x, POO_dir2_y, line_of_sight_distance) == True):
 POI_list[0].append(x)
 POI_list[1].append(y1)
 POO_dir1_list[0].append(POO_dir1_x)
 POO_dir1_list[1].append(POO_dir1_y)
 POO_dir2_list[0].append(POO_dir2_x)
 POO_dir2_list[1].append(POO_dir2_y)
 poi_counter = poi_counter + 1
 x = x + 0.5
 delta_theta_sum = theta1_sum/k - theta2_sum

 total_amount_of_angle = total_amount_of_angle + angle_counter
 if verbose_mode == True:
 print 'Number of valid angles: ' + str(angle_counter) + ' and current number of POIs are: ' + str(poi_counter)

 #If gps2_x == gps3_x and gps2_y == gps3_y then all calculations needed has been carried out.
 # Continuing beyond will be to calculate the same POIs one more time, which is unnecessary :)
 if gps2_x == gps3_x and gps2_y == gps3_y: #even gps positions
 if verbose_mode == True:
 print '\n'
 break_status = True
 break
 elif gps1_x == gps3_x and gps1_y == gps3_y: #uneven gps positions
 if verbose_mode == True:
 print '\n'
 break_status = True
 break

 if break_status == True:
 if verbose_mode == True:
 print 'The total number of valid angles are: ' + str(total_amount_of_angle) + ' and the total number of POIs are: ' + str(poi_counter)
 valid_POI_list = [[],[]]
 if delta_theta_sum > 0.0 and travel_westing == 1: #going east and pinpointing object on left.
 for poi_element in range(0, len(POI_list[0])-1):
 #POI on the left side
 if POI_list[1][poi_element] > POO_dir1_list[1][poi_element] and POI_list[1][poi_element] > POO_dir2_list[1][poi_element]:
 POI_x_list.append(POI_list[0][poi_element])
 POI_y_list.append(POI_list[1][poi_element])
 if verbose_mode == True:
 print 'while traveling EAST and the object is on the LEFT side of the car.'
 elif delta_theta_sum < 0.0 and travel_westing == 1: #going east and pinpointing object on right.
 for poi_element in range(0, len(POI_list[0])-1):
 #POI on the right side
 if POI_list[1][poi_element] < POO_dir1_list[1][poi_element] and POI_list[1][poi_element] < POO_dir2_list[1][poi_element]:
 POI_x_list.append(POI_list[0][poi_element])
 POI_y_list.append(POI_list[1][poi_element])
 if verbose_mode == True:
 print 'while traveling EAST and the object is on the RIGHT side of the car.'
 elif delta_theta_sum > 0.0 and travel_westing == -1: #going west and pinpointing object on left.
 for poi_element in range(0, len(POI_list[0])-1):
 #POI on the left side
 if POI_list[1][poi_element] < POO_dir1_list[1][poi_element] and POI_list[1][poi_element] < POO_dir2_list[1][poi_element]:
 POI_x_list.append(POI_list[0][poi_element])
 POI_y_list.append(POI_list[1][poi_element])
 if verbose_mode == True:
 print 'while traveling WEST and the object is on the LEFT side of the car.'
 elif delta_theta_sum < 0.0 and travel_westing == -1: #going west and pinpointing object on right.
 for poi_element in range(0, len(POI_list[0])-1):
 #POI on the right side
 if POI_list[1][poi_element] > POO_dir1_list[1][poi_element] and POI_list[1][poi_element] > POO_dir2_list[1][poi_element]:
 POI_x_list.append(POI_list[0][poi_element])
 POI_y_list.append(POI_list[1][poi_element])

Master Thesis Report – Appendices

66

 if verbose_mode == True:
 print 'while traveling WEST and the object is on the RIGHT side of the car.'
 if verbose_mode == True:
 print 'Weighing the set of POIs gathered...'
 (valid_POI_list[0], valid_POI_list[1], counter) = checkPOIconcentrations(POI_x_list, POI_y_list, object_size_tolerance)
 if verbose_mode == True:
 print 'The amount of POIs have been reduced to ' + str(counter) + ' valid POIs.\n'
 old_distance_to_road = float(99999999999.999999) #init
 distance_to_road = float(99999999999.999999) #init
 for poo_elements in range(0,len(POO_dir1_list)-1):
 distance_to_road1 = sqrt(pow((valid_POI_list[0][0]-POO_dir1_list[0][poo_elements]),2)+pow((valid_POI_list[1][0]-
POO_dir1_list[1][poo_elements]),2))
 distance_to_road2 = sqrt(pow((valid_POI_list[0][0]-POO_dir2_list[0][poo_elements]),2)+pow((valid_POI_list[1][0]-
POO_dir2_list[1][poo_elements]),2))
 if distance_to_road1 <= distance_to_road2 and distance_to_road1 <=old_distance_to_road:
 distance_to_road = distance_to_road1
 old_distance_to_road = distance_to_road
 elif distance_to_road2 < distance_to_road1 and distance_to_road2 <=old_distance_to_road:
 distance_to_road = distance_to_road2
 old_distance_to_road = distance_to_road
 print 'Distance B Between the Pinpointed Object and the Road is: ' + str(distance_to_road) + '\n'
 return (valid_POI_list[0], valid_POI_list[1])
 else:
 return ([],[])

#Check if POI is sufficiently close to the Point-Of-Origins (POO_dir1 and POO_dir2).
def checkPOIdistanceToPOOs(poi_x, poi_y, POO_dir1_x, POO_dir1_y, POO_dir2_x, POO_dir2_y, line_of_sight_distance):
 distance1 = sqrt(pow((poi_x -POO_dir1_x),2)+pow((poi_y-POO_dir1_y),2))
 distance2 = sqrt(pow((poi_x -POO_dir2_x),2)+pow((poi_y-POO_dir2_y),2))
 if distance1 <= line_of_sight_distance and distance2 <= line_of_sight_distance:
 return True
 else:
 return False

#Check POI concentrations
def checkPOIconcentrations(POI_x_list, POI_y_list, object_size_tolerance):
 if POI_x_list != [] and POI_y_list != []:
 x_list = []
 y_list = []
 valid_POI_list = [[],[],[]] #[[x],[y],[number of valid neighbours]]
 for n in range(0,len(POI_x_list)-1):
 valid_status = False
 hit_counter = 0
 for m in range(n,len(POI_x_list)-1):
 if POI_x_list[n] != POI_x_list[m] and POI_y_list[n] != POI_y_list[m]:
 d_between_POIs = sqrt(pow((POI_x_list[n]-POI_x_list[m]),2)+pow((POI_y_list[n]-POI_y_list[m]),2))
 if d_between_POIs <= object_size_tolerance:
 if POI_x_list[n] in valid_POI_list[0]:
 hit_counter = valid_POI_list[2][valid_POI_list[0].index(POI_x_list[n])] + 1
 valid_POI_list[2][valid_POI_list[0].index(POI_x_list[n])] = hit_counter
 else:
 valid_POI_list[0].append(POI_x_list[n])
 valid_POI_list[1].append(POI_y_list[n])
 valid_POI_list[2].append(1)
 valid_POI_list[0].append(POI_x_list[m])
 valid_POI_list[1].append(POI_y_list[m])
 valid_POI_list[2].append(1)

 x_list.append(valid_POI_list[0][valid_POI_list[2].index(max(valid_POI_list[2]))])
 y_list.append(valid_POI_list[1][valid_POI_list[2].index(max(valid_POI_list[2]))])
 x_list.append(valid_POI_list[0][valid_POI_list[2].index(max(valid_POI_list[2]))-1])
 y_list.append(valid_POI_list[1][valid_POI_list[2].index(max(valid_POI_list[2]))-1])
 return (x_list, y_list, 2)
 else:
 return ([],[],0)

Figure 10.6.1: The code for the second OSREP algorithm.

