

Material Programming: a New
Interaction Design Practice

Abstract
We propose the notion of material programming as a
new practice for designing future interactive artifacts.
Material programming would be a way for the
interaction designer to better explore the dynamics of
the materials at hand and through that familiarity be
able to compose more sophisticated and complex
temporal forms in their designs. As such it would blur
the boundaries between programming and crafting
these new smart and computational materials. We
envision a material programming practice developed
around physical tools (e.g. Fig 1) that draw on bodily
skills and experiences (Fig 2) while enabling actions
performed directly on the material with immediate
effects (no program vs. execution mode). Finally, the
tools would enable one layer of abstraction and as such
encompass the potential of the computational materials
but not that of possibly adjacent computers, which
could run more complex algorithms.

Author Keywords
Material programming; computational composites;
materials; design practice; programming practice

ACM Classification Keywords
H.5.m. Information interfaces and presentation:
Miscellaneous

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
DIS '16 Companion, June 04-08, 2016, Brisbane, QLD, Australia
ACM 978-1-4503-4315-2/16/06.
http://dx.doi.org/10.1145/2908805.2909411

Figure 1 Speculative tools for
material programming.

Figure 2 Illustration of imagined
embodied material programming
practice. Here the wall is
programmed into a shape-changing
behavior around the hand-held tool.

Anna Vallgårda
IxD lab
IT University of Copenhagen
Copenhagen, Denmark
akav@itu.dk

Laurens Boer
IxD lab
IT University of Copenhagen
Copenhagen, Denmark
laub@itu.dk

Vasiliki Tsaknaki
Mobile Life @ KTH
Royal Institute of Technology
Stockholm, Sweden
tsaknaki@kth.se

Dag Svanæs
IxD lab
IT University of Copenhagen
Copenhagen, Denmark
&
Department of Computer and
Information Science
Norwegian University of Science
and Technology.
Trondheim, Norway
dag.svanes@idi.ntnu.no

Introduction
In the not too distant future computational composites
[9] will be everyday design material. By computational
composites we mean materials that hold classic
material qualities (e.g. structural durability, flexibility,
transparency, weight, color, acoustics) but additionally
they are capable of sensing (detect changes in their
surroundings), actuating (conditionally assume more
than one state), and computation. Development within
smart materials [1], graphene transistors [8],
nanotubes [2] etc. makes these kinds of materials
theoretically possible already today albeit not yet
practically available. The question is: what would a
formgiving practice with those materials look like? How
would designers become familiar with the dynamics and
different combinations of cause and effect of these
materials? Which tools would we need and how would
they work? Will we still ‘program’ them through
detached laptops or will the programming happen
closer to the materials at hand? We here propose a new
research program for developing a material
programming practice. Based on an analysis of other
physical programming practices combined with our own
practices of craft and industrial design we propose a set
of qualities we would wish to be supported by a future
material programming practice (see Fig 1).

Physical programming
The expressive power of a programming language is
constrained by its underlying execution model. A
computer program’s expressive power – its level of
abstraction, potential complexity, and the kind of
problems it can solve – is formed by the rules of the
language and the execution model it builds on. Textual
programming was developed in the context of textual
systems. Graphical programming was developed with

the graphical interface. And with the rise of physical
interfaces, physical programming practices such as
tangible programming (TP) and programming by example
(PbE) were developed. With the miniaturization of
computation and its tight integration into actual
material, we need another design and physical
programming practice that plays into the same
modalities as the materials we design with. Before
imagining what such practice could entail, we examine
the qualities of two existing physical programming
practices TP and PbE.

TP environments [cf. 3; 6] (e.g. Fig 3) use physical
objects to represent various programming elements,
commands, and flow control structures. The manipulation
and arrangement of these objects are then used to
construct algorithms [6]. By relying on physical
manipulation, TP draws on our bodily experiences. As
such it supports spontaneous explorations as well as
affords collaboration in context [cf. 4]. The drawback is
the particularity it demands – the programming
environment is highly task-specific and affords often
little in terms of thinking out of the box. Consequently,
both the potential action space and the threshold for
comprehending the action space are lowered making it
suitable for confined application areas such as toys.

PbE [cf. 7] (e.g. Fig 4) is a programming practice where
the programmer demonstrates an algorithm to a
system by recording a set of actions through an
artifact/interface. The actions are then played back in
the artifact/interface. PbE is typically applied in
situations where the artifact is a one-off, accessible,
and tangible, such as in the design of shape-changing
interfaces and robots. Like TP, PbE has a low threshold
for beginners and non-technical disciplines. Further, its

Figure 3 Tangible programming:
Strawbies [5].

Figure 4 Programming by example:
Topobo being programmed [7].

complete lack of abstractions makes composing the
behavior immediate. There is no need for the designer
to mentally translate conditional and temporal
constructs of a code into a behavioral expression.
However, the type of behavioral expressions that are
possible to compose through programming by example
is constrained by what the materials, actuators, and
sensors in the artifact allows.

Thus, both TP and PbE hold crucial physical qualities
that enables an embodied practice and direct or easy
coupling between programming and execution. Where
TP allows for at least one layer of abstraction PbE does
not. Yet where TP allows for synchronous programming
and execution PbE does not. Both, however, tend to be
confined to a particular set of artifacts leaving the
design space rather limited. With this new research
program we wish to explore the possiblities to develop
a physical programming practice. Through the use of
physical programming tools that works directly on the
computational materials we imagine a design practice
which blurs the lines between programming and craft.

Material programming
With a continuous interweaving of complex
computational technologies and materials over the
coming decade [1; 8; 9] it becomes pertinent to
develop a programming practice, which enables the
designer to stay within the material realm when
designing interactive artifacts. This requires “getting a
feel” for the dynamics between sensory mechanisms
and actuating mechanisms in the materials – of cause
and effect. Gaining this “feel” is, however, only really
possible through explorations with the materials at
hand. Thus we wish to develop a programming practice
that supports this. More specifically, we have identified

four qualities that a material programming (MP)
practice should encompass:

First, an MP practice should not rely on an abstract
representation of the programming actions performed
on the material. We envision MP to rely on some sort of
specified physical tools (see Fig 1, 2, 5 & 6). The tools
would be tailored to the unique interactive and physical
properties of particular materials, enabling those
properties to play a key role in both concept
development and actual creation. MP would thus be in
line with traditional crafting practices, where several
dedicated tools are used for crafting a material, and
that can be mastered through practice and skill gained
over time. Not unlike a silversmith’s practice. A force
tool (see Fig 5), for example, could provide the
possibility to explore different rhythms and directions of
movement in a shape-changing computational
composite, supporting an understanding of its
properties at hand. The tools would invite and enable
the interaction designer to explore the spectrum of
possible relations between action (input) and reaction
(output) on the material itself.

Second, the physical interaction with the tools and the
material enables the designer to slowly develop tacit
bodily skills and knowledge. The tools would thus allow
the interaction designers to use their body in ways
similar to that of crafting non-computational materials,
enabling and utilizing the designer’s expressive
potential and already developed bodily skills (Fig 2).

Third, the practice should unite the ‘programming’ and
‘execution’ mode enabling immediacy and a constant
focus on the material at hand. The low threshold for
exploring the design space thus allows the designer to

Figure 5 The speculative Select tool
used for programming a shape-
changing material.

Figure 6 The speculative Force tool
used for programming a shape-
changing material.

rapidly prototype a long range of different expressions
and interactions. As such, the tools would invite
explorations of a materials’ potential temporal form,
such as rhythms, reaction times, speed, predictability
etc. in real time and in-situ.

Fourth, in its hands-on approach the MP practice
resembles the practice of PbE with the key difference
that MP contains one level of abstraction through the
tools. This simple layer allows the designer to freely
couple cause and effects in input and output to the
degree the material allows. We imagine the possibility
of using more advanced algorithms and databases in a
back-end design, which would probably rely on
traditional textual programming. In that sense MP can
be seen as the front-end from a programming
perspective.

Finally, a MP practice would not only aid the interaction
designer in engaging in a material practice but would
also appeal to more traditional design and craft
practitioners. Thus our future computational artifacts
and environments could be envisioned and designed by
people not brought up in technological educations and
practices. Consequently, we could also expect a more
varied and complex range of expressions and functions.
This is a proposal for a new research program, which
will seek to unfold, explore, and populate with various
degrees of prototypes of MP platforms and tools
combined with studies of design and programming
practices. As computational composites become more
readily available we expect the development of an MP
practice would solidify. Until then, we welcome others
to join us in exploring the possibilities of a new material
programming practice.

References
1. Michelle Addington and Daniel Schodek. 2005.

Smart Materials and Technologies. Architectural
Press, Elsevier. Oxford, UK

2. Adrian Bachtold, Peter Hadley, Takeshi Nakanishi,
& Cees Dekker. 2001. Logic circuits with carbon
nanotube transistors. Science. 294, 5545. 1317-
1320.

3. Kunal Chawla, Megan Chiou, Alfredo Sandes, &
Paulo Blikstein. 2013. Dr. Wagon: a ‘stretchable’
toolkit for tangible computer programming. In the
Proceedings of the 12th International Conference
on Interaction Design and Children (IDC ‘13), pp.
561-564.

4. Ylva Fernaeus and Jakob Tholander. 2006. Finding
design qualities in a tangible programming space.
In the Proceedings of the Conference on Human
Factors in computing systems (CHI’06), pp. 447-
456.

5. Felix Hu, Ariel Zekelman, Michael Horn, & Frances
Judd. 2015. Strawbies: explorations in tangible
programming. In the Proceedings of the 4th
International Conference on Interaction Design and
Children (IDC ‘15), pp. 410-413.

6. Timothy S McNerney. 2004. From turtles to
Tangible Programming Bricks: explorations in
physical language design. Personal and Ubiquitous
Computing. 8, 5. 326-337.

7. Hayes Solos Raffle, Amanda J. Parkes, & Hiroshi
Ishii. 2004. Topobo: A Constructive Assembly
System with Kinetic Memory. In the Proceedings of
the Conference on Human Factors in Computing
Systems (CHI’04), pp.

8. Frank Schwierz. 2010. Graphene transistors.
Nature nanotechnology. 5, 7. 487-496.

9. Anna Vallgårda and Johan Redström. 2007.
Computational Composites. In the Proceedings of
the Conference on Human Factors in Computing
Systems (CHI’07), pp. 513-522.

